Growth Study of Hierarchical Pore SSZ-13 Molecular Sieves with Improved CO2 Adsorption Performance
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of SSZ-13
2.2. Characterization
3. Results and Discussion
3.1. Effect of Reaction Time on the Sample Structure
3.2. Effect of Aging Time on the SSZ-13 Molecular Sieve Structure
3.3. Effect of Sodium Fluoride Addition on the Performance of SSZ-13 Molecular Sieve
3.4. CO2 Adsorption Performance of SSZ-13 Molecular Sieve
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Li, G.; Singh, R.; Gu, Q.; Nairn, K.M.; Bastow, T.J.; Medhekar, N.; Doherty, C.M.; Hill, A.J.; Liu, J.Z.; et al. Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites. J. Am. Chem. Soc. 2012, 134, 19246–19253. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Zhou, L.; Luo, Y. Controllable synthesis of Si-DD3R molecular sieves nanocrystallineby microwave assisting dry-gel conversion method. Mater. Res. Express 2020, 7, 085014. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, C.; Wang, J.; Wang, J.; Wang, L.; Xu, C.; Shen, M. Efficient hydrothermal synthesis of SSZ-13 with variable grain size. Materials 2020, 13, 1829. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Han, R.; Tao, Y.; Wang, J.; Luo, Y. Optimized preparation of nanosized hollow SSZ-13 molecular sieves with ultrasonic assistance. Nanomaterials 2020, 10, 2298. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, R.; Guo, Q.; Bian, H.; Lan, A.; Li, X.; Han, P.; Dou, T. Efficient synthesis of high silica SSZ-13 zeolite via a steam-assisted crystallization process. J. Porous Mater. 2019, 26, 1879–1888. [Google Scholar] [CrossRef]
- Wang, J.; Shao, L.; Wang, C.; Wang, J.; Shen, M.; Li, W. Controllable preparation of various crystal size and natureof intra-crystalline diffusion in Cu/SSZ-13 NH3-SCR catalysts. J. Catal. 2018, 367, 221–228. [Google Scholar] [CrossRef]
- Niu, K.; Li, G.; Liu, J.; Wei, Y. One step synthesis of Fe-SSZ-13 zeolite by hydrothermal method. J. Solid State Chem. 2020, 287, 121330. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Y.; Meng, D.; Kong, X.; Yang, S.; Guo, W.; Qiu, H.; Kong, L.; Zhang, Y.; Zhang, Z. Fast synthesis of thin SSZ-13 membranes by a hot-dipping method. J. Membr. Sci. 2021, 629, 119297. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, N.; Wang, H.; Bu, N.; Zhang, F.; Zhou, R. Preparation of steam-stable high-silica CHA(SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. J. Membr. Sci. 2015, 475, 303–310. [Google Scholar] [CrossRef]
- Pham Trong, D.; Liu, Q.; Lobo, R.F. Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites. Langmuir 2013, 29, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Mlekodaj, K.; Bernauer, M.; Olszowka, J.E.; Klein, P.; Pashkova, V.; Dedecek, J. Synthesis of the Zeolites from SBU: An SSZ-13 Study. Chem. Mater. 2021, 33, 1781–1788. [Google Scholar] [CrossRef]
- Kosinov, N.; Auffret, C.; Borghuis, G.J.; Sripathi, V.G.P.; Hensen, E.J.M. Influence of the Si/Al ratio on the separation properties of SSZ-13 zeolite membranes. J. Membr. Sci. 2015, 484, 140–145. [Google Scholar] [CrossRef]
- Nazari, M.; Moradi, G.; Behbahani, R.M.; Ghavipour, M.; Abdollahi, S. Preparation and evaluation of the modified nanoparticle SAPO-18 for catalytic conversion of methanol to light olefins. Catal. Lett. 2015, 145, 1893–1903. [Google Scholar] [CrossRef]
- Zhu, X.; Kosinov, N.; Hofmann, J.P.; Mezari, B.; Qian, Q.; Rohling, R.; Weckhuysen, B.M.; RuizMartıinez, J.; Hensen, E.J.M. Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite. Chem. Commun. 2016, 52, 3227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babic, V.; Koneti, S.; Moldovan, S.; Nesterenko, N.; Gilson, J.-P.; Valtchev, V. Preparation of hierarchical SSZ-13 by NH4F etching. Microporous Mesoporous Mater. 2021, 314, 110863. [Google Scholar] [CrossRef]
- Hudson, M.R.; Queen, W.L.; Mason, J.A.; Fickel, D.W.; Lobo, R.F.; Brown, C.M. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J. Am. Chem. Soc. 2012, 134, 1970–1973. [Google Scholar] [CrossRef] [PubMed]
Sample | Solution Composition SDA:NaOH:Al:Si:H2O:F | Al Source | T (°C) | t (h) | Aging Time (h) |
---|---|---|---|---|---|
S-1 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 8 | 6 |
S-2 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 16 | 6 |
S-3 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 24 | 6 |
S-4 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 48 | 6 |
S-5 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 72 | 6 |
S-6 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 96 | 6 |
S-7 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 120 | 6 |
S-8 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 144 | 6 |
S-9 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 96 | 12 |
S-10 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 96 | 18 |
S-11 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 96 | 24 |
S-12 | 20:20:5:100:4400:5 | Al (NO3)3 | 160 | 96 | 24 |
S-13 | 20:20:5:100:4400:10 | Al (NO3)3 | 160 | 96 | 24 |
S-14 | 20:20:5:100:4400:15 | Al (NO3)3 | 160 | 96 | 24 |
S-15 | 20:20:5:100:4400:0 | Al (NO3)3 | 160 | 48 | 6 |
Sample | SBET (m2/g) | Total Pore Volume 1,3 (mL/g) | Mesoporous Volume 2 (cm3/g) | Micropore Volume 1 (cm3/g) | External Surface Area 1 (m2/g) | |
---|---|---|---|---|---|---|
S-5 | 626 | 0.30 | 0.02 | 0.28 | 29.12 | |
S-6 | 644 | 0.33 | 0.04 | 0.29 | 27.35 | |
S-7 | 627 | 0.31 | 0.03 | 0.28 | 24.49 | |
S-8 | 621 | 0.31 | 0.03 | 0.28 | 30.13 |
Sample | SBET (m2/g) | Total Pore Volume 1,3 (mL/g) | Mesoporous Volume 2 (cm3/g) | Micropore Volume 1 (cm3/g) | Desorption Cumulative Surface Area (m2/g) |
---|---|---|---|---|---|
S-11 | 642 | 0.32 | 0.04 | 0.28 | 31.77 |
S-12 | 601 | 0.32 | 0.06 | 0.25 | 56.74 |
S-13 | 542 | 0.29 | 0.04 | 0.24 | 37.95 |
S-14 | 568 | 0.30 | 0.04 | 0.25 | 32.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, R.; Tao, Y.; Zhou, L. Growth Study of Hierarchical Pore SSZ-13 Molecular Sieves with Improved CO2 Adsorption Performance. Nanomaterials 2021, 11, 3171. https://doi.org/10.3390/nano11123171
Han R, Tao Y, Zhou L. Growth Study of Hierarchical Pore SSZ-13 Molecular Sieves with Improved CO2 Adsorption Performance. Nanomaterials. 2021; 11(12):3171. https://doi.org/10.3390/nano11123171
Chicago/Turabian StyleHan, Runlin, Yuxuan Tao, and Liang Zhou. 2021. "Growth Study of Hierarchical Pore SSZ-13 Molecular Sieves with Improved CO2 Adsorption Performance" Nanomaterials 11, no. 12: 3171. https://doi.org/10.3390/nano11123171
APA StyleHan, R., Tao, Y., & Zhou, L. (2021). Growth Study of Hierarchical Pore SSZ-13 Molecular Sieves with Improved CO2 Adsorption Performance. Nanomaterials, 11(12), 3171. https://doi.org/10.3390/nano11123171