A Strategic Approach to Use Upcycled Si Nanomaterials for Stable Operation of Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Preparation of Nanostructured Si Dust Anode Electrode
3.2. Characterization
3.3. Measurement of Electrochemical Performance
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.-M.; et al. Net-zero emissions energy systems. Science 2018, 360, eaas9793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Kim, P.J. A Roadmap of Battery Separator Development: Past and Future. Curr. Opin. Electrochem. 2021, 100858, in press. [Google Scholar] [CrossRef]
- Tzeng, Y.; Chen, R.; He, J.-L. Silicon-Based Anode of Lithium Ion Battery Made of Nano Silicon Flakes Partially Encapsulated by Silicon Dioxide. Nanomaterials 2020, 10, 2467. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Tarascon, J.M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367. [Google Scholar] [CrossRef]
- Argyropoulos, D.-P.; Zardalidis, G.; Giotakos, P.; Daletou, M.; Farmakis, F. Study of the Role of Void and Residual Silicon Dioxide on the Electrochemical Performance of Silicon Nanoparticles Encapsulated by Graphene. Nanomaterials 2021, 11, 2864. [Google Scholar] [CrossRef]
- McDowell, M.T.; Lee, S.W.; Nix, W.D.; Cui, Y. 25th Anniversary Article: Understanding the Lithiation of Silicon and Other Alloying Anodes for Lithium-Ion Batteries. Adv. Mater. 2013, 25, 4966–4985. [Google Scholar] [CrossRef]
- Son, I.H.; Hwan Park, J.; Kwon, S.; Park, S.; Rümmeli, M.H.; Bachmatiuk, A.; Song, H.J.; Ku, J.; Choi, J.W.; Choi, J.-M.; et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat. Commun. 2015, 6, 7393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.H.; Zhong, L.; Huang, S.; Mao, S.X.; Zhu, T.; Huang, J.Y. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6, 1522–1531. [Google Scholar] [CrossRef]
- Song, T.; Choi, J.; Paik, U. Freestanding rGO-SWNT-STN Composite Film as an Anode for Li Ion Batteries with High Energy and Power Densities. Nanomaterials 2015, 5, 2380–2390. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.; Chen, T.; Bok, T.; Song, G.; Ma, J.; Hwang, C.; Luo, L.; Song, H.-K.; Cho, J.; Wang, C.; et al. Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes. Nat. Commun. 2018, 9, 2924. [Google Scholar] [CrossRef]
- Shi, L.; Pang, C.; Chen, S.; Wang, M.; Wang, K.; Tan, Z.; Gao, P.; Ren, J.; Huang, Y.; Peng, H.; et al. Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes. Nano Lett. 2017, 17, 3681–3687. [Google Scholar] [CrossRef] [PubMed]
- Keller, C.; Desrues, A.; Karuppiah, S.; Martin, E.; Alper, J.P.; Boismain, F.; Villevieille, C.; Herlin-Boime, N.; Haon, C.; Chenevier, P. Effect of Size and Shape on Electrochemical Performance of Nano-Silicon-Based Lithium Battery. Nanomaterials 2021, 11, 307. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.E.; Jang, I.-S.; Kang, Y.C.; Chun, J.; Jung, D.-S. Residual silica removal and nanopore generation on industrial waste silicon using ammonium fluoride and its application to lithium-ion battery anodes. Chem. Eng. J. 2021, 419, 129389. [Google Scholar] [CrossRef]
- Yoko, A.; Oshima, Y. Recovery of silicon from silicon sludge using supercritical water. J. Supercrit. Fluids 2013, 75, 1–5. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, L.; Zhan, J.; Du, N.; Liu, W.; Ma, J.; Su, L.; Wang, L. Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes. J. Power Sources 2020, 449, 227513. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Zhu, M.; Wang, W.; Wang, L.; Xie, S.; Wang, L.; Yang, X.; He, X.; Sun, Y. Recycling of Lignin and Si Waste for Advanced Si/C Battery Anodes. ACS Appl. Mater. Interfaces 2020, 12, 57055–57063. [Google Scholar] [CrossRef]
- Kim, K.H.; Shon, J.; Jeong, H.; Park, H.; Lim, S.J.; Heo, J.S. Improving the cyclability of silicon anodes for lithium-ion batteries using a simple pre-lithiation method. J. Power Sources 2020, 459, 228066. [Google Scholar] [CrossRef]
- Sekar, S.; Aqueel Ahmed, A.T.; Inamdar, A.I.; Lee, Y.; Im, H.; Kim, D.Y.; Lee, S. Activated Carbon-Decorated Spherical Silicon Nanocrystal Composites Synchronously-Derived from Rice Husks for Anodic Source of Lithium-Ion Battery. Nanomaterials 2019, 9, 1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.; Choi, J.; Song, T.; Paik, U. Stackable, three dimensional carbon–metal oxide composite for high performance supercapacitors. J. Mater. Chem. A 2015, 3, 20459–20464. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.; Ha, J.; Song, T.; Paik, U. Sol–gel nanoglues for an organic binder-free TiO2 nanofiber anode for lithium ion batteries. Nanoscale 2013, 5, 3230–3234. [Google Scholar] [CrossRef] [PubMed]
- Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule 2017, 1, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Kondo, A.; Lee, S.; Myeong, S.; Sun, S.; Hwang, I.; Song, T.; Naito, M.; Paik, U. Controlled swelling behavior and stable cycling of silicon/graphite granular composite for high energy density in lithium ion batteries. J. Power Sources 2020, 457, 228021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kwon, J.; Kim, M.J.; O, M.J.; Jung, D.S.; Roh, K.C.; Jang, J.; Kim, P.J.; Choi, J. A Strategic Approach to Use Upcycled Si Nanomaterials for Stable Operation of Lithium-Ion Batteries. Nanomaterials 2021, 11, 3248. https://doi.org/10.3390/nano11123248
Kim J, Kwon J, Kim MJ, O MJ, Jung DS, Roh KC, Jang J, Kim PJ, Choi J. A Strategic Approach to Use Upcycled Si Nanomaterials for Stable Operation of Lithium-Ion Batteries. Nanomaterials. 2021; 11(12):3248. https://doi.org/10.3390/nano11123248
Chicago/Turabian StyleKim, Junghwan, Jisoo Kwon, Min Ji Kim, Min Ju O, Dae Soo Jung, Kwang Chul Roh, Jihyun Jang, Patrick Joohyun Kim, and Junghyun Choi. 2021. "A Strategic Approach to Use Upcycled Si Nanomaterials for Stable Operation of Lithium-Ion Batteries" Nanomaterials 11, no. 12: 3248. https://doi.org/10.3390/nano11123248
APA StyleKim, J., Kwon, J., Kim, M. J., O, M. J., Jung, D. S., Roh, K. C., Jang, J., Kim, P. J., & Choi, J. (2021). A Strategic Approach to Use Upcycled Si Nanomaterials for Stable Operation of Lithium-Ion Batteries. Nanomaterials, 11(12), 3248. https://doi.org/10.3390/nano11123248