Computational Study Regarding CoxFe3−xO4 Ferrite Nanoparticles with Tunable Magnetic Properties in Superparamagnetic Hyperthermia for Effective Alternative Cancer Therapy
Abstract
:1. Introduction
2. Theoretical Considerations on Specific Loss Power in Superparamagnetic Hyperthermia
3. Results and Discution
3.1. Characteristic Observables of Nanoparticles Depending on the Concentration of Co2+ Ions and Alternating Magnetic Field Parameters, and Input/Output Data Used in SPMHT
3.1.1. Magnetic Anisotropy and Spontaneous Magnetization
3.1.2. Nanoparticles and Alternating Magnetic Field Parameters
3.1.3. Input and Output Data Used in Computational Study of SPMHT
3.2. The Specific Loss Power in Superparamagnetic Hyperthermia with CoxFe3−xO4 Ferrite Nanoparticles
3.3. Superparamagnetic Hyperthermia Optimization with CoxFe3−xO4 Ferrite Nanoparticles: The Optimal Conditions Determination for Biologic Limit
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jordan, A.; Scholz, R.; Wust, P.; Schirra, H.; Schiestel, T.; Schmidt, H.; Felix, R.J. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater. 1999, 194, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Tanaka, K.; Honda, H.; Abe, S.; Yamaguchi, H.; Kobayaschi, T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J. Biosci. Bioeng. 2003, 96, 364–369. [Google Scholar] [CrossRef]
- Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 2005, 100, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilger, I.; Hergt, R.; Kaiser, W.A. Towards breast cancer treatment by magnetic heating. J. Magn. Magn. Mater. 2005, 293, 314–319. [Google Scholar] [CrossRef]
- Maier-Hauff, K.; Rothe, R.; Scholz, R.; Gneveckow, U.; Wust, P.; Thiesen, B.; Feussner, A.; Deimling, A.; Waldoefner, N.; Felix, R.; et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: Results of a feasibility study on patients with glioblastoma multiforme. J. Neuro-Oncol. 2007, 81, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, M.; Gneveckow, U.; Thiesen, B.; Taymoorian, K.; Cho, C.H.; Waldofner, N.; Scholz, R.; Jordan, A.; Loening, S.A.; Wust, P. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol. 2007, 52, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Gazeau, F.; Lévy, M.; Wilhelm, C. Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine 2008, 3, 831–844. [Google Scholar] [CrossRef] [PubMed]
- Fortin, J.P.; Gazeau, F.; Wilhelm, C. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles. Eur. Biophys. J. 2008, 37, 223–228. [Google Scholar] [CrossRef]
- Laurent, S.; Dutz, S.; Hafeli, U.O.; Mahmoudi, M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 2011, 166, 8–23. [Google Scholar] [CrossRef] [PubMed]
- Alphandéry, E.; Chebbi, I.; Guyot, F.; Durand-Dubief, M. Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review. Int. J. Hyperth. 2013, 29, 801–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caizer, C. Computational study on superparamagnetic hyperthermia with biocompatible SPIONs to destroy the cancer cells. J. Phys. Conf. Ser. 2014, 521, 012015. [Google Scholar] [CrossRef] [Green Version]
- Di Corato, R.; Béalle, G.; Kolosnjaj-Tabi, J.; Espinosa, A.; Clément, O.; Silva, A.; Ménager, C.; Wilhelm, C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 2015, 9, 2904–2916. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yang, Y.; Ling, Y.; Liu, J.; Cai, X.; Zhou, X.; Tang, X.; Liang, B.; Chen, Y.; Chen, H.; et al. Injectable and thermally contractible hydroxypropyl methyl cellulose/Fe3O4 for magnetic hyperthermia ablation of tumors. Biomaterials 2017, 128, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Caizer, C. Magnetic hyperthermia-using magnetic metal/oxide nanoparticles with potential in cancer therapy. In Metal Nanoparticles in Pharma; Rai, M., Shegokar, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kandasamy, G.; Sudame, A.; Bhati, P.; Chakrabarty, A.; Maity, D. Systematic investigations on heating effects of carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy. J. Mol. Liq. 2018, 256, 224–237. [Google Scholar] [CrossRef]
- Yan, H.; Shang, W.; Sun, X.; Zhao, L.; Wang, J.; Xiong, Z.; Yuan, J.; Zhang, R.; Huang, Q.; Wang, K.; et al. “All-in-One” Nanoparticles for Trimodality Imaging-Guided Intracellular Photo-magnetic Hyperthermia Therapy under Intravenous Administration. Adv. Funct. Mater. 2018, 28, 1705710. [Google Scholar] [CrossRef]
- Caizer, C. Magnetic/Superparamagnetic hyperthermia as an effective noninvasive alternative method for therapy of malignant tumors. In Nanotheranostics: Applications and Limitations; Rai, M., Jamil, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 297–335. [Google Scholar]
- Smit, J.; Wijin, H.P.J. Les Ferites; Bibliotheque Technique Philips: Paris, France, 1961. [Google Scholar]
- Valenzuela, R. Magnetic Ceramics; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Rosensweig, R.E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 2002, 252, 370–374. [Google Scholar] [CrossRef]
- Caizer, C.; Rai, M. Magnetic nanoparticles in alternative tumors therapy: Biocompatibility, toxicity and safety compared with classical methods. In Magnetic Nanoparticles in Human Health and Medicine: Current Medical Applications and Alternative Therapy of Cancer; Caizer, C., Rai, M., Eds.; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Hejase, H.; Hayek, S.; Qadri, S.; Haik, Y. MnZnFe nanoparticles for self-controlled magnetic hyperthermia. J. Magn. Magn. Mater. 2012, 324, 3620–3628. [Google Scholar] [CrossRef]
- Caizer, C.; Hadaruga, N.; Hadaruga, D.; Tanasie, G.; Vlazan, P. The Co ferrite nanoparticles/liposomes: Magnetic bionanocomposites for applications in malignant tumors therapy. In Proceedings of the 7th International Conference Inorganic Materials, Biarritz, France, 12–14 September 2010. [Google Scholar]
- Kumar, C.S.; Mohammad, F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 789–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, P.; Giri, J.; Samanta, G.; Sarma, H.D.; Mishra, K.P.; Bellare, J.; Banerjee, R.; Bahadur, D. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 12–22. [Google Scholar] [CrossRef]
- Qu, Y.; Li, J.; Ren, J.; Leng, J.; Lin, C.; Shi, D. Enhanced Magnetic Fluid Hyperthermia by Micellar Magnetic Nanoclusters Composed of MnxZn1–xFe2O4 Nanoparticles for Induced Tumor Cell Apoptosis. ACS Appl. Mater. Interfaces 2014, 6, 16867–16879. [Google Scholar] [CrossRef]
- Caizer, C. Magnetic anisotropy of CoxFe3−xO4 nanoparticles for applications in magnetic hyperthermia. In Proceedings of the 19th International Conference on Magnetism (ICM 2012), Busan, Korea, 8–13 July 2012. [Google Scholar]
- Saldívar-Ramírez, M.M.G.; Sanchez-Torres, C.G.; Cortés-Hernández, D.A.; Escobedo-Bocardo, J.C.; Almanza-Robles, J.M.; Larson, A.; Reséndiz-Hernández, P.J.; Acuña-Gutiérrez, I.O. Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia. J. Mater. Sci. Mater. Med. 2014, 25, 2229–2236. [Google Scholar] [CrossRef]
- Liu, X.L.; Ng, C.T.; Chandrasekharan, P.; Yang, H.T.; Zhao, L.Y.; Peng, E.; Lv, Y.B.; Xiao, W.; Fang, J.B.; Yi, J.; et al. Synthesis of Ferromagnetic Fe0.6Mn0.4O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1-T2Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy. Adv. Healthc. Mater. 2016, 5, 2092–2104. [Google Scholar] [CrossRef] [PubMed]
- Almaki, J.H.; Nasiri, R.; Idris, A.; Majid, F.A.A.; Salouti, M.; Wong, T.S.; Dabagh, S.; Marvibaigi, M.; Amini, N. Synthesis, characterization and In Vitro evaluation of exquisite targeting SPIONs–PEG–HER in HER2+ human breast cancer cells. Nanotechnology 2016, 27, 105601. [Google Scholar] [CrossRef]
- Caizer, C. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy. Nanomaterials 2021, 11, 40. [Google Scholar] [CrossRef]
- Caizer, C. Theoretical Study on Specific Loss Power and Heating Temperature in CoFe2O4 Nanoparticles as Possible Candidate for Alternative Cancer Therapy by Superparamagnetic Hyperthemia. Appl. Sci. 2021, 11, 5505. [Google Scholar] [CrossRef]
- Caizer, C. Scientific Research Report. UEFISCDI 2020, in press. [Google Scholar]
- Néel, L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. Ann. Geophys. 1949, 5, 99−136. [Google Scholar]
- Prasad, N.K.; Rathinasamy, K.; Panda, D.; Bahadur, D. Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of -MnxFe2–xO3 synthesized by a single step process. J. Mat. Chem. 2007, 17, 5042–5051. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167–R181. [Google Scholar] [CrossRef] [Green Version]
- Kneller, E. Ferromagnetismus; Springer: Berlin/Heidelberg, Germany, 1962. [Google Scholar]
- Shliomis, M. Magnetic fluids. Sov. Phys. Uspekhi. 1974, 17, 153–169. [Google Scholar] [CrossRef]
- Jacobs, I.S.; Bean, C.P. Fine particles, thin films and exchange anisotropy. In Magnetism; Rado, G.T., Suhl, H., Eds.; Academic Press: Cambridge, MA, USA, 1963; Volume III, pp. 271–350. [Google Scholar]
- Bean, C.P.; Livingston, L.D. Superparamagnetism. J. Appl. Phys. 1959, 30, S120−S129. [Google Scholar] [CrossRef]
- Back, C.H.; Weller, D.; Heidmann, J.; Mauri, D.; Guarisco, D.; Garwin, E.L.; Siegmann, H.C. Magnetization Reversal in Ultrashort Magnetic Field Pulses. Phys. Rev. Lett. 1998, 81, 3251–3254. [Google Scholar] [CrossRef] [Green Version]
- Hergt, R.; Dutz, S. Magnetic particle hyperthermia—Biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007, 311, 187–192. [Google Scholar] [CrossRef]
- Brero, F.; Albino, M.; Antoccia, A.; Arosio, P.; Avolio, M.; Berardinelli, F.; Bettega, D.; Calzolari, P.; Ciocca, M.; Corti, M.; et al. Hadron Therapy, Magnetic Nanoparticles and Hyperthermia: A Promising Combined Tool for Pancreatic Cancer Treatment. Nanomaterials 2020, 10, 1919. [Google Scholar] [CrossRef] [PubMed]
Observables | x | K (×103 J/m3) | Ms (kA/m) | ρ (×103 kg/m3) | |
---|---|---|---|---|---|
No. | |||||
1 | 0 | 11 (I) | 480 (I) | 5.24 | |
2 | 0.05 | 38 | 477 | ~5.243 | |
3 | 0.1 | 82 | 474 | 5.245 | |
4 | 0.2 | 156 | 469 | 5.25 | |
5 | 0.4 | 245 | 458 | 5.26 | |
6 | 0.67 | 294 | 443 | ~5.27 | |
7 | 0.8 | 290 (I) | 436 | 5.28 | |
8 | 1 | 200 (II) | 425 (II) | 5.29 | |
9 | 1.1 | 180 (I) | - | - |
Observables | D (nm) | ε | H (kA/m) | f (kHz) |
---|---|---|---|---|
Value range | 1–20 | 0.1 | 10–50 | 100–500 |
Observables | x | PsM (W/g) | DM (nm) | |
---|---|---|---|---|
No. | ||||
1 | 0 | 31.69 | 17.4 | |
2 | 0.05 | 21.14 | 11.5 | |
3 | 0.1 | 11.85 | 9 | |
4 | 0.2 | 6.45 | 7.2 | |
5 | 0.4 | 3.96 | 6.2 | |
6 | 0.67 | 3.05 | 5.9 | |
7 | 0.8 | 3.03 | 5.9 | |
8 | 1 | 4.11 | 6.7 |
Observables | x | PsM (W/g) | DM (nm) | |
---|---|---|---|---|
No. | ||||
1 | 0 | 77.6 | 16.7 | |
2 | 0.05 | 48.95 | 11.1 | |
3 | 0.1 | 26.59 | 8.6 | |
4 | 0.2 | 14.23 | 6.9 | |
5 | 0.4 | 8.66 | 6. | |
6 | 0.67 | 6.81 | 5.6 | |
7 | 0.8 | 6.62 | 5.6 | |
8 | 1 | 9.13 | 6.4 |
Observables | x | PsM (W/g) | DM (nm) | |
---|---|---|---|---|
No. | ||||
1 | 0 | 152.1 | 16.1 | |
2 | 0.05 | 91.06 | 10.7 | |
3 | 0.1 | 48.13 | 8.3 | |
4 | 0.2 | 25.61 | 6.7 | |
5 | 0.4 | 15.48 | 5.8 | |
6 | 0.67 | 12.2 | 5.4 | |
7 | 0.8 | 11.88 | 5.4 | |
8 | 1 | 16.25 | 6.2 |
Ho (kA/m) | fl (kHz) | H × f AHz/m | x = 0 | x = 0.05 | x = 0.1 | x = 0.2 | x = 0.4 | x = 0.67 | x = 0.8 | x = 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(PsM)l (W/g) | DMo (nm) | (PsM)l (W/g) | DMo (nm) | (PsM)l (W/g) | DMo (nm) | (PsM)l (W/g) | DMo (nm) | (PsM)l (W/g) | DMo (nm) | (PsM)l (W/g) | DMo (nm) | (PsM)l (W/g) | DMo (nm) | (PsM)l (W/g) | DMo (nm) | |||
10 | 500 | 5 × 109 | 62.29 | 16.1 | 26.13 | 10.7 | 12.47 | 8.3 | 6.47 | 6.7 | 3.89 | 5.8 | 3.06 | 5.4 | 2.98 | 5.4 | 4.08 | 6.2 |
20 | 250 | 5 × 109 | 77.60 | 16.7 | 48.94 | 11.1 | 26.59 | 8.6 | 14.23 | 6.9 | 8.66 | 6.0 | 6.81 | 5.6 | 6.63 | 5.6 | 9.12 | 6.4 |
30 | 167 | 5 × 109 | 82.57 | 17.0 | 62.52 | 11.3 | 39.12 | 8.7 | 20.07 | 7.1 | 13.75 | 6.1 | 10.77 | 5.7 | 10.44 | 5.7 | 14.41 | 6.5 |
40 | 125 | 5 × 109 | 84.60 | 17.2 | 68.96 | 11.5 | 48.92 | 8.8 | 29.43 | 7.2 | 18.63 | 6.2 | 14.82 | 5.8 | 14.48 | 5.8 | 19.58 | 6.6 |
50 | 100 | 5 × 109 | 85.94 | 17.4 | 74.31 | 11.5 | 56.68 | 8.9 | 36.59 | 7.2 | 23.78 | 6.2 | 18.52 | 5.9 | 18.42 | 5.9 | 24.31 | 6.7 |
Observables | x | Ho (kA/m) | fl (kHz) | |
---|---|---|---|---|
No. | ||||
1 | 0 | 10–30 | 500–167 | |
2 | 0.05 | 10–40 | 500–125 | |
3 | 0.1 | 10–50 | 500–100 | |
4 | 0.2 | 20–50 | 250–100 | |
5 | 0.4; 1 | 30–50 | 167–100 | |
6 | 0.67; 0.8 | 40–50 | 125–100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caizer, C. Computational Study Regarding CoxFe3−xO4 Ferrite Nanoparticles with Tunable Magnetic Properties in Superparamagnetic Hyperthermia for Effective Alternative Cancer Therapy. Nanomaterials 2021, 11, 3294. https://doi.org/10.3390/nano11123294
Caizer C. Computational Study Regarding CoxFe3−xO4 Ferrite Nanoparticles with Tunable Magnetic Properties in Superparamagnetic Hyperthermia for Effective Alternative Cancer Therapy. Nanomaterials. 2021; 11(12):3294. https://doi.org/10.3390/nano11123294
Chicago/Turabian StyleCaizer, Costica. 2021. "Computational Study Regarding CoxFe3−xO4 Ferrite Nanoparticles with Tunable Magnetic Properties in Superparamagnetic Hyperthermia for Effective Alternative Cancer Therapy" Nanomaterials 11, no. 12: 3294. https://doi.org/10.3390/nano11123294
APA StyleCaizer, C. (2021). Computational Study Regarding CoxFe3−xO4 Ferrite Nanoparticles with Tunable Magnetic Properties in Superparamagnetic Hyperthermia for Effective Alternative Cancer Therapy. Nanomaterials, 11(12), 3294. https://doi.org/10.3390/nano11123294