Influence of Thickness on the Magnetic and Magnetotransport Properties of Epitaxial La0.7Sr0.3MnO3 Films Deposited on STO (0 0 1)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jonker, G.H.; van Santen, J.H. Ferromagnetic compounds of manganese with perovskite structure. Physica 1950, 16, 337–349. [Google Scholar] [CrossRef]
- Tokura, Y. Colossal Magnetoresistive Oxides; Gordon and Breach Science Publishers: London, UK, 2000. [Google Scholar]
- Salamon, M.B.; Jaime, M. The physics of manganites: Structure and transport. Rev. Mod. Phys. 2001, 73, 583. [Google Scholar] [CrossRef]
- Wang, X.; Jin, C.; Wang, P.; Pang, X.; Zheng, W.; Zheng, D.; Li, Z.; Zheng, R.; Bai, H. Defects induced huge magnetoresistance in epitaxial La1–xSrxMnO3 thin films deposited by magnetic sputtering. Appl. Phys. Lett. 2019, 115, 182405. [Google Scholar] [CrossRef]
- Sinha, U.K.; Das, B.; Padhan, P. Interfacial reconstruction in La0.7Sr0.3MnO3 thin films: Giant low-field magnetoresistance. Nanoscale Adv. 2020, 2, 2792–2799. [Google Scholar] [CrossRef]
- Hrib, L.M.; Pintilie, L.; Alexe, M. Magnetocapacitance in La0.7Sr0.3MnO3/Pb(Zr0.2Ti0.8)O3/La0.7Sr0.3MnO3 multiferroic heterostructures. Sci. Rep. 2017, 7, 6563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yau, J.-B.; Hong, X.; Posadas, A.; Ahn, C.H.; Gao, W.; Altman, E.; Bason, Y.; Klein, L.; Sidorov, M.; Krivokapic, Z. Anisotropic magnetoresistance in colossal magnetoresistive La1−xSrxMnO3 thin films. J. Appl. Phys. 2007, 102, 103901. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Vescovo, E.; Kim, H.-J.; Kwon, C.; Ramesh, R.; Venkatesan, T. Direct evidence for a half-metallic ferromagnet. Nature 1998, 392, 794–796. [Google Scholar] [CrossRef]
- Nadgorny, B. The case against half-metallicity in La0.7Sr0.3MnO3. J. Phys. Condens. Matter 2007, 19, 315209. [Google Scholar] [CrossRef] [PubMed]
- Urushibara, A.; Moritomo, Y.; Arima, T.; Asamitsu, A.; Kido, G.; Tokura, Y. Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys. Rev. B Condens. Matter Mater. Phys. 1995, 51, 14103. [Google Scholar] [CrossRef]
- Vaz, C.A.F.; Moyer, J.A.; Arena, D.A.; Ahn, C.H.; Henrich, V.E. Magnetic and electronic structure of ultrathin La1−xSrxMnO3 films at half doping. Phys. Rev. B 2014, 90, 024414. [Google Scholar] [CrossRef] [Green Version]
- Brivio, S.; Cantoni, M.; Petti, D.; Bertacco, R. Near-room-temperature control of magnetization in field effect devices based on La0.67Sr0.33MnO3 thin films. J. Appl Phys. 2010, 108, 113906. [Google Scholar] [CrossRef]
- Wang, Z.H.; Shen, B.G.; Tang, N.; Cai, J.W.; Ji, T.H.; Zhao, J.G.; Zhan, W.S.; Che, G.C.; Dai, S.Y.; Ng, D.H.L. Colossal magnetoresistance in cluster glass-like insulator La0.67Sr0.33(Mn0.8Ni0.2)O3. J. Appl. Phys. 1999, 85, 5399–5401. [Google Scholar] [CrossRef]
- Autret, C.; Gervais, M.; Gervais, F.; Raimboux, N.; Simon, P. Temperature dependence of phase separation and magnetic anisotropy by electron spin resonance in Pr0.6 Ca0.4 Mn0.9 Ru0.1O3. Solid State Sci. 2004, 6, 815. [Google Scholar] [CrossRef]
- Reshmi, C.P.; Pillai, S.S.; Suresh, K.G.; Varma, M.R. Room temperature magnetocaloric properties of Ni substituted La0.67Sr0.33MnO3. Solid State Sci. 2013, 19, 130–135. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, H.; Zhang, S.; Ge, H.; Hua, S. Magnetic and magnetocaloric properties of perovskite La0.7Sr0.3Mn1-xCoxO3. Physica B 2013, 410, 1–4. [Google Scholar] [CrossRef]
- Arayedh, B.; Kallel, S.; Kallel, N.; Peña, O. Influence of non-magnetic and magnetic ions on the MagnetoCaloric properties of La0.7Sr0.3Mn0.9M0.1O3 doped in the Mn sites by M=Cr, Sn, Ti. J. Magn. Magn. Mater. 2014, 361, 68–73. [Google Scholar] [CrossRef] [Green Version]
- Shinde, K.P.; Deshpande, N.G.; Eom, T.; Lee, Y.P.; Pawar, S.H. Solution-combustion synthesis of La0.65Sr0.35MnO3 and the magnetocaloric properties. Mater. Sci. Eng. B 2010, 167, 202–205. [Google Scholar] [CrossRef]
- Anwar, M.S.; Kumar, S.; Ahmed, F.; Arshi, N.; Kim, G.W.; Koo, B.H. Above room temperature magnetic transition and magnetocaloric effect in La0.66Sr0.34MnO3. J. Korean Phys. Soc. 2012, 60, 1587–1592. [Google Scholar] [CrossRef]
- Kim, H.-J.; Yoo, D.G.; Yoo, S.-I. Large planar Hall effect in the La0.7Sr0.3MnO3 thin films at room temperature. Mater. Lett. 2014, 123, 23–26. [Google Scholar] [CrossRef]
- Pesquera, D.; Skumryev, V.; Sánchez, F.; Herranz, G.; Fontcuberta, J. Magnetoelastic coupling in La2/3Sr1/3MnO3 thin films on SrTiO3. Phys. Rev. B-Cond. Matter Mater. Phys. 2011, 84, 184412. [Google Scholar] [CrossRef] [Green Version]
- Lukose, R.; Plausinaitiene, V.; Vagner, M.; Zurauskiene, N.; Kersulis, S.; Kubilius, V.; Motiejuitis, K.; Knasiene, B.; Stankevic, V.; Saltyte, Z.; et al. Relation between thickness, crystallite size and magnetoresistance of nanostructured La1−xSrxMnyO3±δ films for magnetic field sensors. Beilstein J. Nanotechnol. 2019, 10, 256–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousseau, O.; Flament, S.; Guillet, B.; Sing, M.L.C.; Méchin, L. Magnetic Sensors Based on AMR Effect in LSMO Thin Films. Proceed. Eurosens. 2017, 1, 635. [Google Scholar] [CrossRef] [Green Version]
- Bowen, M.; Bibes, M.; Barthelemy, A.; Contour, J.-P.; Anane, A.; Lemaitre, Y.; Fert, A. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl. Phys. Lett. 2003, 82, 233–235. [Google Scholar] [CrossRef] [Green Version]
- Garcia, V.; Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 2014, 5, 4289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bourdais, D.; Agnus, G.; Maroutian, T.; Pillard, V.; Aubert, P.; Bachelet, R.; Saint-Girons, G.; Vilquin, B.; Lefeuvre, E.; Lecoeur, P. Epitaxial manganite freestanding bridges for low power pressure sensors. J. Appl. Phys. 2015, 118, 124509. [Google Scholar] [CrossRef]
- Remaggi, F.; Pellegrino, L.; Manca, N.; Bernini, C.; Marre, D. Towards Micromechanical Sensors with (La,Sr)MnO3 Epitaxial Films. Proc. Eng. 2016, 168, 818–821. [Google Scholar] [CrossRef]
- Nagde, K.R.; Bhoga, S.S. Effect of preparative methods on electrical and electrochemical performance of lanthanum strontium manganite. Ionics 2009, 15, 571–578. [Google Scholar] [CrossRef]
- Majumdar, S.; van Dijken, S. Pulsed laser deposition of La1−xSrxMnO3: Thin-film properties and spintronic applications. J. Phys. D Appl. Phys. 2014, 47, 034010. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, M.; Giesen, M.; Duchon, T.; Moors, M.; Mueller, D.N.; Hack, J.; Baeumer, C.; Hamed, M.H.; Cao, L.; Zhang, H.; et al. Photoemission electron microscopy of magneto-ionic effects in La0.7Sr0.3MnO3. APL Mater. 2020, 8, 111102. [Google Scholar] [CrossRef]
- Dediu, V.A.; Hueso, L.E.; Bergenti, I.; Taliani, C. Spin routes in organic semiconductors. Nat. Mat. 2009, 8, 707–716. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, L.; Chen, P.; Niu, L. Organic light-emitting device based on LSMO. Hongwai Yu Jiguang Gongcheng/Infrared Laser Eng. 2015, 44, 2105–2109. [Google Scholar]
- Bergenti, I.; Dediu, V.; Murgia, M.; Riminucci, A.; Ruani, G.; Taliani, C. Transparent manganite films as hole injectors for organic light emitting diodes. J. Lumin. 2004, 110, 384–388. [Google Scholar] [CrossRef]
- Zhao, S.; Hou, W.; Zhou, Z.; Li, Y.; Zhu, M.; Li, H.; Li, C.; Hu, Z.; Yu, P.; Liu, M. Ionic Liquid Gating Control of Spin Wave Resonance in La0.7Sr0.3MnO3 Thin Film. Adv. Electr. Mater. 2020, 6, 1900859. [Google Scholar] [CrossRef]
- Yu, X.; Jin, S.; Li, H.; Guan, X.; Gu, X.; Liu, X. High room-temperature TCR and MR of La1−xSrxMnO3 thin films for advanced uncooled infrared bolometers and magnetic sensors. Appl. Surf. Sci. 2021, 570, 151221. [Google Scholar] [CrossRef]
- Yun, E.-J.; Cheon, C.I. High frequency tunable LC devices with ferroelectric/ferromagnetic thin film heterostructure. Phys. Stat. Sol. 2004, 241, 1625–1628. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Lee, Y.T.; Cheon, C.I.; Yun, E.-J.; Plana, R. Tunable (La,Sr)MnO3 (LSMO) Ferromagnetic Thin Films for Radio Frequency Applications. IEEE Microw. Wirel. Comp. Lett. 2009, 19, 36–38. [Google Scholar] [CrossRef]
- Fujishiro, H.; Fukase, T.; Ikebe, M. Charge Ordering and Sound Velocity Anomaly in La1−xSrxMnO3 (X ≥ 0.5). J. Phys. Soc. Jpn. 1998, 67, 2582–2585. [Google Scholar] [CrossRef]
- Anderson, W.; Hasegawa, H. Considerations on double exchange. Phys. Rev. 1955, 100, 675–681. [Google Scholar] [CrossRef]
- Gennes, P.G. Effects of double exchange in magnetic crystals. Phys. Rev. 1960, 118, 141–154. [Google Scholar] [CrossRef]
- Ramirez, A.P.; Schiffer, P.; Cheong, S.-W.; Chen, C.H.; Bao, W.; Palstra, T.T.M.; Gammel, P.L.; Bishop, D.J.; Zegarski, B. Thermodynamic and electron diffraction signatures of charge and spin ordering in La1−xCaxMnO3. Phys. Rev. Lett. 1996, 76, 3188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Ma, X.L.; Li, D.X.; Lu, H.B.; Chen, Z.H.; Yang, G.Z. Microdomains in thin films of rhombohedral La0.7Sr0.3MnO3. Phys. Status Solidi A 2003, 196, 365–371. [Google Scholar] [CrossRef]
- Meservey, R.; Tedrow, P.M. Spin-polarized electron tunneling. Phys. Rep. 1994, 238, 173. [Google Scholar] [CrossRef]
- Kaiser, C.; van Dijken, S.; Yang, S.-H.; Yang, H.; Parkin, S.S.P. Role of Tunneling Matrix Elements in Determining the Magnitude of the Tunneling Spin Polarization of 3d Transition Metal Ferromagnetic Alloys. Phys. Rev. Lett. 2005, 94, 247203. [Google Scholar] [CrossRef]
- Spankova, M.; Strbík, V.; Dobrock, E.; Chromik, S.; Sojkova, M.; Zheng, D.N.; Li, J. Characterization of epitaxial LSMO thin films with high Curie temperature prepared on different substrates. Vacuum 2016, 126, 24–28. [Google Scholar] [CrossRef]
- Monsen, A.; Boschker, J.E.; Macia, F.; Wells, J.W.; Nordblad, P.; Kent, A.D.; Mathieu, R.; Tybell, T.; Wahlstrom, E. Thickness dependence of dynamic and static magnetic properties of pulsed laser deposited La0.7Sr0.3MnO3 films on SrTiO3(001). J. Magn. Magn. Mater. 2014, 369, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Chen, S.; Ke, S.; Zeng, X.; Huang, C. High-temperature ferromagnetic insulating phase in strained La0.8Sr0.2MnO3 thin films. J. Phys. D Appl. Phys. 2019, 52, 485001. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, Y.; Qi, R.; Huang, R.; Yang, J.; Bai, W.; Chen, Y.; Wang, G.; Dong, X.; Tang, X. Thickness dependent magnetic properties of epitaxial La0.7Sr0.3MnO3 thin films prepared by chemical solution deposition method. Ceram. Int. 2017, 43, S493–S496. [Google Scholar] [CrossRef]
- Yadav, K.; Singh, H.K.; Maurya, K.K.; Varma, G.D. Thickness-dependent magnetic and transport properties of La0.5Sr0.5MnO3 thin films deposited by DC magnetron sputtering on the LaAlO3 substrate. Appl. Phys. A 2018, 124, 66. [Google Scholar] [CrossRef]
- Bolstad, T.; Lysne, E.; Hallsteinsen, I.; Arenholz, E.; Österberg, U.L.; Tybell, T. Effect of (1 1 1)-oriented strain on the structure and magnetic properties of La0.7Sr0.3MnO3 thin films. J. Phys. Condens. Matter. 2018, 30, 255702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaluvadi, S.K.; Ajejas, F.; Orgiani, P.; Lebargy, S.; Minj, A.; Flament, S.; Camarero, J.; Perna, P.; Mechin, L. Epitaxial strain and thickness dependent structural, electrical and magnetic properties of La0.67Sr0.33MnO3 films. J. Phys. D Appl. Phys. 2020, 53, 375005. [Google Scholar] [CrossRef]
- Xiao, L.; Chen, Y.; Liu, Z.; Xue, F.; Zhu, M.; Lian, J.; Wang, G.; Wen, Z.; Wang, W.; Dong, X. Electric transport and magnetic properties of La0.7Sr0.3MnO3 thin films grown on PLZST ceramics. Mater. Lett. 2017, 199, 184–187. [Google Scholar] [CrossRef]
- Ma, R.; Hou, J.; Yang, H. The Effect of Oxygen Vacancies and Strain on the Curie Temperature of La0.7Sr0.3MnO₃ Films. J. Magn. 2018, 23, 333–336. [Google Scholar] [CrossRef]
- Porter, S.B.; Venkatesan, M.; Dunne, P.; Doudin, B.; Rode, K.; Coey, J.M.D. Magnetic Dead Layers in La0.7Sr0.3MnO3 Revisited. IEEE Trans Magn 2017, 53, 8000351. [Google Scholar] [CrossRef] [Green Version]
- Zener, C. Interaction between the d Shells in the Transition Metals. Phys. Rev. 1951, 81, 440. [Google Scholar] [CrossRef]
- Millis, A.J.; Shraiman, B.I.; Mueller, R. Dynamic Jahn-Teller Effect and Colossal Magnetoresistance in La1−xSrxMnO3. Phys. Rev. Lett. 1996, 77, 175. [Google Scholar] [CrossRef] [Green Version]
- Maezono, R.; Ishihara, S.; Nagaosa, N. Phase diagram of manganese oxides. Phys. Rev. B 1998, 58, 11583. [Google Scholar] [CrossRef] [Green Version]
- Weiße, A.; Loos, J.; Fehske, H. Two-phase scenario for the metal-insulator transition in colossal magnetoresistance manganites. Phys. Rev. B 2001, 64, 104413. [Google Scholar] [CrossRef] [Green Version]
- Fath, M.; Freisem, S.; Menovsky, A.A.; Tomioka, Y.; Aarts, J.; Mydosh, J.A. Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites. Science 1999, 285, 1540–1542. [Google Scholar] [CrossRef] [PubMed]
- Tupta, M.A. Resistivity measurements using a four-point collinear probe. EE Eval. Eng. 2016, 55, 18–19. [Google Scholar]
- Hibble, S.J.; Cooper, S.P.; Fawcett, I.D.; Hannon, A.C.; Greenblatt, M. Local distortions in the colossal magnetoresistive manganates La0.70Ca0.30MnO3, La0.80Ca0.20MnO3 and La0.70Sr0.30MnO3 revealed by total neutron diffraction. J. Phys. Cond. Matter. 1999, 11, 9221–9238. [Google Scholar] [CrossRef]
- Taib, M.F.M.; Yaakob, M.K.; Hassan, O.H.; Yahya, M.Z.A. Structural, electronic, and lattice dynamics of PbTiO3, SnTiO3, and SnZrO3: A comparative first-principles study. Integr. Ferroelectr. 2013, 142, 119–127. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Venkatesan, M.; Stamenov, P. Surface magnetism of strontium titanate. J. Phys. Cond. Matter. 2016, 28, 485001. [Google Scholar] [CrossRef] [Green Version]
- Mercone, S.; Belmeguenai, M.; Malo, S.; Ott, F.; Cayrel, F.; Golosovsky, M.; Leridon, B.; Adamo, C.; Monod, P. Investigation of ferromagnetic heterogeneities in La0.7Sr0.3MnO3 thin films. J. Phys. D Appl. Phys. 2017, 50, 045001. [Google Scholar] [CrossRef]
- Štrbík, V.; Chromik, Š. Characterization of electrical transport in LSMO with enhanced temperature of metal-insulator transition. J. Electr. Eng. 2012, 63, 270–272. [Google Scholar] [CrossRef] [Green Version]
- Uehara, M.; Mori, S.; Chen, C.H.; Cheong, S.W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 1999, 399, 560–563. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greculeasa, S.G.; Stanciu, A.-E.; Leca, A.; Kuncser, A.; Hrib, L.; Chirila, C.; Pasuk, I.; Kuncser, V. Influence of Thickness on the Magnetic and Magnetotransport Properties of Epitaxial La0.7Sr0.3MnO3 Films Deposited on STO (0 0 1). Nanomaterials 2021, 11, 3389. https://doi.org/10.3390/nano11123389
Greculeasa SG, Stanciu A-E, Leca A, Kuncser A, Hrib L, Chirila C, Pasuk I, Kuncser V. Influence of Thickness on the Magnetic and Magnetotransport Properties of Epitaxial La0.7Sr0.3MnO3 Films Deposited on STO (0 0 1). Nanomaterials. 2021; 11(12):3389. https://doi.org/10.3390/nano11123389
Chicago/Turabian StyleGreculeasa, Simona Gabriela, Anda-Elena Stanciu, Aurel Leca, Andrei Kuncser, Luminita Hrib, Cristina Chirila, Iuliana Pasuk, and Victor Kuncser. 2021. "Influence of Thickness on the Magnetic and Magnetotransport Properties of Epitaxial La0.7Sr0.3MnO3 Films Deposited on STO (0 0 1)" Nanomaterials 11, no. 12: 3389. https://doi.org/10.3390/nano11123389
APA StyleGreculeasa, S. G., Stanciu, A. -E., Leca, A., Kuncser, A., Hrib, L., Chirila, C., Pasuk, I., & Kuncser, V. (2021). Influence of Thickness on the Magnetic and Magnetotransport Properties of Epitaxial La0.7Sr0.3MnO3 Films Deposited on STO (0 0 1). Nanomaterials, 11(12), 3389. https://doi.org/10.3390/nano11123389