Polarization-Independent Large Third-Order-Nonlinearity of Orthogonal Nanoantennas Coupled to an Epsilon-Near-Zero Material
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Linear Characteristic Analysis
3.2. Field Distributions and Enhancement
3.3. Nonlinear Response Enhancement Mechanism
3.4. Nonlinear Coefficient
3.5. Enhancement of Third-Order Susceptibility
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef]
- Liberal, I.; Engheta, N. Near-zero refractive index photonics. Nat. Photonics 2017, 11, 149–158. [Google Scholar] [CrossRef]
- Niu, X.; Hu, X.; Chu, S.; Gong, Q. Epsilon-near-zero photonics: A new platform for integrated devices. Adv. Opt. Mater. 2018, 6, 1701292. [Google Scholar] [CrossRef]
- Kinsey, N.; DeVault, C.; Boltasseva, A.; Shalaev, V.M. Near-zero-index materials for photonics. Nat. Rev. Mater. 2019, 4, 742–760. [Google Scholar] [CrossRef]
- Reshef, O.; de Leon, I.; Alam, M.Z.; Boyd, R.W. Nonlinear optical effects in epsilon-nearzero media. Nat. Rev. Mater. 2019, 4, 535–551. [Google Scholar] [CrossRef]
- Alam, M.Z.; de Leon, I.; Boyd, R.W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797. [Google Scholar] [CrossRef]
- Caspani, L.; Kaipurath, R.P.M.; Clerici, M.; Ferrera, M.; Roger, T.; Kim, J.; Kinsey, N.; Pietrzyk, M.; di Falco, A.; Shalaev, V.M.; et al. Enhanced nonlinear refractive index in ε-near-zero materials. Phys. Rev. Lett. 2016, 116, 233901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Xie, Z.T.; Sha, Y.; Fu, H.Y.; Li, Q. Comparative study on epsilon-near-zero transparent conducting oxides: High-order chromatic dispersions and modeling of ultrashort pulse interactions. Phys. Rev. A 2020, 102, 053503. [Google Scholar] [CrossRef]
- Lee, J.; Tymchenko, M.; Argyropoulos, C.; Chen, P.Y.; Lu, F.; Demmerle, F.; Boehm, G.; Amann, M.C.; Alu, A.; Belkin, M.A. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 2014, 511, 65–69. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, W.; Boulesbaa, A.; Kravchenko, I.I.; Briggs, D.P.; Puretzky, A.; Geohegan, D.; Valentine, J. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett. 2015, 15, 7388–7393. [Google Scholar] [CrossRef]
- Minovich, A.E.; Miroshnichenko, A.E.; Bykov, A.Y.; Murzina, T.V.; Neshev, D.N.; Kivshar, Y.S. Functional and nonlinear optical metasurfaces. Laser Photonics Rev. 2015, 9, 195–213. [Google Scholar] [CrossRef]
- Ren, M.; Jia, B.; Ou, J.Y.; Plum, E.; Zhang, J.; MacDonald, K.F.; Nikolaenko, A.E.; Xu, J.; Gu, M.; Zheludev, N.I. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 2013, 23, 5540–5544. [Google Scholar] [CrossRef]
- Abb, M.; Albella, P.; Aizpurua, J.; Muskens, O.L. All-optical control of a single plasmonic nanoantenna–ITO hybrid. Nano Lett. 2011, 11, 2457–2463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abb, M.; Wang, Y.; Groot, C.H.; Muskens, O.L. Hot spot-mediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nat. Commun. 2014, 5, 4869. [Google Scholar] [CrossRef] [Green Version]
- Boyd, R.W.; Gehr, R.J.; Fischer, G.L.; Sipe, J.E. Nonlinear optical properties of nanocomposite materials. Pure Appl. Opt. J. Eur. Opt. Soc. Part A 1996, 5, 505–512. [Google Scholar] [CrossRef]
- Boyd, R.W.; Sipe, J.E. Nonlinear optical susceptibilities of layered composite materials. J. Opt. Soc. Am. B 1994, 11, 297–303. [Google Scholar] [CrossRef]
- Sarychev, A.K.; Shalaev, V.M. Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Phys. Rep. 2000, 335, 275–371. [Google Scholar] [CrossRef]
- Alam, M.Z.; Schulz, S.A.; Upham, J.; de Leon, I.; Boyd, R.W. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material. Nat. Photonics 2018, 12, 79–83. [Google Scholar] [CrossRef] [Green Version]
- Niu, X.; Hu, X.; Sun, Q.; Lu, C.; Yang, Y.; Yang, H.; Gong, Q. Polarization-selected nonlinearity transition in gold dolmens coupled to an epsilon-near-zero material. Nanophotonics 2020, 9, 4839–4851. [Google Scholar] [CrossRef]
- Rocco, D.; Vincenti, M.A.; de Angelis, C. Boosting second harmonic radiation from AlGaAs nanoantennas with epsilon-near-zero materials. Appl. Sci. 2018, 8, 2212. [Google Scholar] [CrossRef] [Green Version]
- Rocco, D.; de Angelis, C.; de Ceglia, D.; Carletti, L.; Scalora, M.; Vincenti, M.A. Dielectric nanoantennas on epsilon-near-zero substrates: Impact of losses on second order nonlinear processes. Opt. Commun. 2020, 456, 124570. [Google Scholar] [CrossRef]
- Neira, A.D.; Olivier, N.; Nasir, M.E.; Dickson, W.; Wurtz, G.A.; Zayats, A.V. Eliminating material constraints for nonlinearity with plasmonic metamaterials. Nat. Commun. 2015, 6, 7757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campione, S.; Kim, I.; de Ceglia, D.; Keeler, G.A.; Luk, T.S. Experimental verification of epsilonnear-zero plasmon polariton modes in degenerately doped semiconductor nanolayers. Opt. Express 2016, 24, 18782–18789. [Google Scholar] [CrossRef] [PubMed]
- Mendelsberg, R.J.; Garcia, G.; Milliron, D.J. Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory. J. Appl. Phys. 2012, 111, 063515. [Google Scholar] [CrossRef]
- Losego, M.D.; Efremenko, A.Y.; Rhodes, C.L.; Cerruti, M.G.; Franzen, S.; Maria, J.P. Conductive oxide thin films: Model systems for understanding and controlling surface plasmon resonance. J. Appl. Phys. 2009, 106, 024903. [Google Scholar] [CrossRef]
- Rhodes, C.; Franzena, S.; Maria, J.-P.; Losego, M.; Leonard, D.; Laughlin, B.; Duscher, G.; Weibel, S. Surface plasmon resonance in conducting metal oxides. J. Appl. Phys. 2006, 100, 054905. [Google Scholar] [CrossRef] [Green Version]
- Noginov, M.A.; Gu, L.; Livenere, J.; Zhu, G.; Pradhan, A.K.; Mundle, R.; Bahoura, M.; Barnakov, Y.A.; Podolskiy, V. Transparent conductive oxides: Plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 2011, 99, 021101. [Google Scholar] [CrossRef]
- Sachet, E.; Losego, M.D.; Guske, J.; Franzen, S.; Maria, J.-P. Mid-infrared surface plasmon resonance in zinc oxide semiconductor thin films. Appl. Phys. Lett. 2013, 102, 051114. [Google Scholar] [CrossRef]
- Tian, W.; Liang, F.; Chi, S.; Li, C.; Yu, H.; Zhang, H.; Zhang, H. Highly Efficient Super-Continuum Generation on an Epsilon-Near-Zero Surface. ACS Omega 2020, 5, 2456–2464. [Google Scholar] [CrossRef]
- Vassant, S.; Archambault, A.; Marquier, F.; Pardo, F.; Gennser, U.; Cavanna, A.; Pelouard, J.-L.; Greffet, J.-J. Epsilon-near-zero mode for active optoelectronic devices. Phys. Rev. Lett. 2012, 109, 237401. [Google Scholar] [CrossRef]
- Campione, S.; Liu, S.; Benz, A.; Klem, J.F.; Sinclair, M.B.; Brener, I. Epsilon-near-zero modes for tailored light-matter interaction. Phys. Rev. Appl. 2015, 4, 044011. [Google Scholar] [CrossRef] [Green Version]
- Runnerstrom, E.L.; Kelley, K.P.; Sachet, E.; Shelton, C.T.; Maria, J.P. Epsilon-near-zero modes and surface plasmon resonance in fluorine-doped cadmium oxide thin films. ACS Photonics 2017, 4, 1885–1889. [Google Scholar] [CrossRef]
- Campione, S.; Wendt, J.R.; Keeler, G.A.; Luk, T.S. Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers. ACS Photonic 2016, 3, 293–297. [Google Scholar] [CrossRef]
- Schulz, S.A.; Tahir, A.A.; Alam, M.Z.; Upham, J.; de Leon, I.; Boyd, R.W. Optical response of dipole antennas on an epsilon-near-zero substrate. Phys. Rev. A 2016, 93, 063846. [Google Scholar] [CrossRef] [Green Version]
- To, N.; Juodkazis, S.; Nishijima, Y. Detailed Experiment-theory comparison of mid-infrared metasurface perfect absorbers. Micromachines 2020, 11, 409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishijima, Y.; Balcytis, A.; Naganuma, S.; Seniutinas, G.; Juodkazis, S. Tailoring metal and insulator contributions in plasmonic perfect absorber metasurfaces. ACS Appl. Nano Mater. 2018, 1, 3557–3564. [Google Scholar] [CrossRef]
- Carpene, E. Ultrafast laser irradiation of metals: Beyond the two-temperature model. Phys. Rev. B 2006, 74, 024301. [Google Scholar] [CrossRef]
- Sun, C.; Vallée, F.; Acioli, L.; Ippen, E.P.; Fujimoto, J.G. Femtosecond investigation of electron thermalization in gold. Phys. Rev. B 1993, 48, 12365–12368. [Google Scholar] [CrossRef] [PubMed]
- Rethfeld, B.; Kaiser, A.; Vicanek, M.; Simon, G. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 2002, 65, 214303. [Google Scholar] [CrossRef] [Green Version]
- Conforti, M.; della Valle, G. Derivation of third-order nonlinear susceptibility of thin metal films as a delayed optical response. Phys. Rev. B 2012, 85, 245423. [Google Scholar] [CrossRef] [Green Version]
- Clerici1, M.; Kinsey, N.; DeVault, C.; Kim, J.; Carnemolla, E.G.; Caspani, L.; Shaltout, A.; Faccio, D.; Shalaev, V.; Boltasseva, A.; et al. Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation. Nat. Commun. 2017, 8, 15829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, Y.; Honda, K.; Yagi, T.; Jia, J.; Taketoshi, N.; Shigesato, Y. Thermal conductivity of hetero-epitaxial ZnO thin films on c- and r-plane sapphire substrates: Thickness and grain size effect. J. Appl. Phys. 2019, 125, 035101. [Google Scholar] [CrossRef]
- Del Fatti, N.; Voisin, C.; Achermann, M.; Tzortzakis, S.; Christofilos, D.; Vallée, F. Nonequilibrium electron dynamics in noble metals. Phys. Rev. B 2000, 61, 16956–16966. [Google Scholar] [CrossRef] [Green Version]
- Voisin, C.; del Fatti, N.; Christofilos, D.; Vallée, F. Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles. J. Phys. Chem. B 2001, 105, 2264–2280. [Google Scholar] [CrossRef]
- Kim, W.M.; Kim, I.H.; Ko, J.H.; Cheong, B.; Lee, T.S.; Lee, K.S.; Kim, D.; Seong, T.-Y. Density-of-state effective mass and non-parabolicity parameter of impurity doped ZnO thin films. J. Phys. D Appl. Phys. 2008, 41, 195409. [Google Scholar] [CrossRef]
- Smith, D.R.; Schultz, S.; Markos, P.; Soukoulis, C. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 2002, 65, 195104. [Google Scholar] [CrossRef] [Green Version]
- Boyd, R.W. Nonlinear Optics; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Carnemolla, E.G.; Caspani, L.; DeVault, C.; Clerici, M.; Vezzoli, S.; Bruno, V.; Shalaev, V.M.; Faccio, D.; Boltasseva, A.; Ferrera, M. Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides. Opt. Mater. Express 2008, 8, 3392–3400. [Google Scholar] [CrossRef]
- Rodriguez-Sune, L.; Scalora, M.; Johnson, A.S.; Cojocaru, C.; Akozbek, N.; Coppens, Z.J.; Perez-Salinas, D.; Wall, S.; Trull, J. Study of second and third harmonic generation from an indium tin oxide nanolayer: Influence of nonlocal effects and hot electrons. APL Photonics 2020, 5, 010801. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Liu, H.; Wang, Z. Polarization-Independent Large Third-Order-Nonlinearity of Orthogonal Nanoantennas Coupled to an Epsilon-Near-Zero Material. Nanomaterials 2021, 11, 3424. https://doi.org/10.3390/nano11123424
Shi W, Liu H, Wang Z. Polarization-Independent Large Third-Order-Nonlinearity of Orthogonal Nanoantennas Coupled to an Epsilon-Near-Zero Material. Nanomaterials. 2021; 11(12):3424. https://doi.org/10.3390/nano11123424
Chicago/Turabian StyleShi, Wenjuan, Hongjun Liu, and Zhaolu Wang. 2021. "Polarization-Independent Large Third-Order-Nonlinearity of Orthogonal Nanoantennas Coupled to an Epsilon-Near-Zero Material" Nanomaterials 11, no. 12: 3424. https://doi.org/10.3390/nano11123424
APA StyleShi, W., Liu, H., & Wang, Z. (2021). Polarization-Independent Large Third-Order-Nonlinearity of Orthogonal Nanoantennas Coupled to an Epsilon-Near-Zero Material. Nanomaterials, 11(12), 3424. https://doi.org/10.3390/nano11123424