Solid Oxide Cell Electrode Nanocomposites Fabricated by Inkjet Printing Infiltration of Ceria Scaffolds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formulation of LSCF Inks
2.2. Rheological Characterization
2.3. Symmetrical Cells Fabrication
2.4. Microstructural Characterization
2.5. Electrochemical Characterization of Symmetrical Cells
3. Results and Discussion
3.1. Fabrication of the Symmetrical Cells
3.2. Electrochemical Characterization of the Infiltrated Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brisse, A.; Schefold, J.; Zahid, M. High temperature water electrolysis in solid oxide cells. Int. J. Hydrogen Energy 2008, 33, 5375–5382. [Google Scholar] [CrossRef]
- Hauch, A.; Ebbesen, S.D.; Jensen, S.H.; Mogensen, M. Highly efficient high temperature electrolysis. J. Mater. Chem. 2008, 18, 2331–2340. [Google Scholar] [CrossRef]
- Laguna-Bercero, M.A. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J. Power Sources 2012, 203, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, J.; Yu, B.; Zhang, W.; Chen, J.; Qiao, J.; Zhang, J. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology. Chem. Soc. Rev. 2017, 46, 1427–1463. [Google Scholar] [CrossRef]
- Stambouli, A.; Traversa, E. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 2002, 6, 433–455. [Google Scholar] [CrossRef]
- Singhal, S.C.; Kendall, K. High Temperature and Solid Oxide Fuel Cells: Fundamentals, Design and Applications, 1st ed.; Elsevier: Hoboken, NJ, USA, 2003; Volume 16, ISBN 9781856173872. [Google Scholar]
- Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 2015, 72, 141–337. [Google Scholar] [CrossRef]
- Adler, S.B. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes. Chem. Rev. 2004, 104, 4791–4844. [Google Scholar] [CrossRef]
- Irvine, J.T.S.; Neagu, D.; Verbraeken, M.C.; Chatzichristodoulou, C.; Graves, C.R.; Mogensen, M.B. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 2016, 1, 15014. [Google Scholar] [CrossRef] [Green Version]
- Connor, P.A.; Yue, X.; Savaniu, C.D.; Price, R.; Triantafyllou, G.; Cassidy, M.; Kerherve, G.; Payne, D.J.; Maher, R.C.; Cohen, L.; et al. Tailoring SOFC Electrode Microstructures for Improved Performance. Adv. Energy Mater. 2018, 8. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, F.; Chen, F.; Xia, C. Nano-structured Sm0.5Sr0.5CoO3−δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics 2011, 192, 591–594. [Google Scholar] [CrossRef]
- Park, H.J.; Park, J.Y. A promising high-performance lanthanum ferrite-based composite cathode for intermediate temperature solid oxide fuel cells. Solid State Ionics 2013, 244, 30–34. [Google Scholar] [CrossRef]
- Torrell, M.; Morata, A.; Kayser, P.; Kendall, M.; Tarancón, A. Performance and long term degradation of 7 W micro-tubular solid oxide fuel cells for portable applications. J. Power Sources 2015, 285, 439–448. [Google Scholar] [CrossRef]
- Morales, M.; Miguel-Pérez, V.; Tarancon, A.; Slodczyk, A.; Torrell, M.; Ballesteros, B.; Ouweltjes, J.; Bassat, J.; Montinaro, D.; Morata, A. Multi-scale analysis of the diffusion barrier layer of gadolinia-doped ceria in a solid oxide fuel cell operated in a stack for 3000 h. J. Power Sources 2017, 344, 141–151. [Google Scholar] [CrossRef]
- Morales, M.; Pesce, A.; Slodczyk, A.; Torrell, M.; Piccardo, P.; Montinaro, D.; Tarancón, A.; Morata, A. Enhanced Performance of Gadolinia-Doped Ceria Diffusion Barrier Layers Fabricated by Pulsed Laser Deposition for Large-Area Solid Oxide Fuel Cells. ACS Appl. Energy Mater. 2018, 1, 1955–1964. [Google Scholar] [CrossRef]
- Vohs, J.M.; Gorte, R.J. High-Performance SOFC Cathodes Prepared by Infiltration. Adv. Mater. 2009, 21, 943–956. [Google Scholar] [CrossRef]
- Jiang, S.P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges. Int. J. Hydrogen Energy 2012, 37, 449–470. [Google Scholar] [CrossRef]
- Ding, D.; Li, X.; Lai, S.Y.; Gerdes, K.; Liu, M. Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci. 2013, 7, 552–575. [Google Scholar] [CrossRef]
- Shah, M.; Barnett, S. Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3−δ into Gd-Doped Ceria. Solid State Ionics 2008, 179, 2059–2064. [Google Scholar] [CrossRef]
- Sholklapper, T.Z.; Jacobson, C.P.; Visco, S.J.; De Jonghe, L.C. Synthesis of Dispersed and Contiguous Nanoparticles in Solid Oxide Fuel Cell Electrodes. Fuel Cells 2008, 8, 303–312. [Google Scholar] [CrossRef]
- Sun, C.; Li, H.; Chen, L. Nanostructured ceria-based materials: Synthesis, properties, and applications. Energy Environ. Sci. 2012, 5, 8475–8505. [Google Scholar] [CrossRef]
- Sun, C.; Sun, J.; Xiao, G.; Zhang, H.; Qiu, X.; Li, H.; Chen, L. Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres. J. Phys. Chem. B 2006, 110, 13445–13452. [Google Scholar] [CrossRef]
- Sun, C.; Li, H.; Chen, L. Study of flowerlike CeO2 microspheres used as catalyst supports for CO oxidation reaction. J. Phys. Chem. Solids 2007, 68, 1785–1790. [Google Scholar] [CrossRef]
- Sun, C.; Xie, Z.; Xia, C.; Li, H.; Chen, L. Investigations of mesoporous CeO2–Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochem. Commun. 2006, 8, 833–838. [Google Scholar] [CrossRef]
- Mamak, M.; Coombs, A.N.; Ozin, G. Self-Assembling Solid Oxide Fuel Cell Materials: Mesoporous Yttria-Zirconia and Metal-Yttria-Zirconia Solid Solutions. J. Am. Chem. Soc. 2000, 122, 8932–8939. [Google Scholar] [CrossRef]
- Mamak, M.; Coombs, A.N.; Ozin, G.A. Mesoporous Nickel–Yttria–Zirconia Fuel Cell Materials. Chem. Mater. 2001, 13, 3564–3570. [Google Scholar] [CrossRef]
- Serra, J.M.; Uhlenbruck, S.; Meulenberg, W.A.; Buchkremer, H.P.; Stöver, D. Nano-structuring of solid oxide fuel cells cathodes. Top. Catal. 2006, 40, 123–131. [Google Scholar] [CrossRef]
- Almar, L.; Andreu, T.; Morata, A.; Tarancon, A. Mesoporous NiO-CGO Obtained by Hard Template as High Surface Area Anode for IT-SOFC. ECS Trans. 2011, 35, 1647–1654. [Google Scholar] [CrossRef]
- Almar, L.; Morata, A.; Torrell, M.; Gong, M.; Andreu, T.; Liu, M.; Tarancón, A. A Durable Electrode for Solid Oxide Cells: Mesoporous Ce0.8Sm0.2O1.9 Scaffolds Infiltrated with a Sm0.5Sr0.5CoO3−δ Catalyst. Electrochim. Acta 2017, 235, 646–653. [Google Scholar] [CrossRef]
- Laha, S.C.; Ryoo, R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem. Commun. 2003, 2138–2139. [Google Scholar] [CrossRef] [PubMed]
- Almar, L.; Morata, A.; Torrell, M.; Gong, M.; Liu, M.; Andreu, T.; Tarancón, A. Synthesis and characterization of robust, mesoporous electrodes for solid oxide fuel cells. J. Mater. Chem. A 2016, 4, 7650–7657. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, D. Synthesis of replica mesostructures by the nanocasting strategy. J. Mater. Chem. 2005, 15, 1217–1231. [Google Scholar] [CrossRef]
- Almar, L.; Andreu, T.; Morata, A.; Torrell, M.; Yedra, L.; Estradé, S.; Peiró, F.; Tarancón, A. High-surface-area ordered mesoporous oxides for continuous operation in high temperature energy applications. J. Mater. Chem. A 2013, 2, 3134–3141. [Google Scholar] [CrossRef]
- Torrell, M.; Almar, L.; Morata, A.; Tarancón, A. Synthesis of mesoporous nanocomposites for their application in solid oxide electrolysers cells: Microstructural and electrochemical characterization. Faraday Discuss. 2015, 182, 423–435. [Google Scholar] [CrossRef]
- Hernández, E.; Baiutti, F.; Morata, A.; Torrell, M.; Tarancón, A. Infiltrated mesoporous oxygen electrodes for high temperature co-electrolysis of H2O and CO2 in solid oxide electrolysis cells. J. Mater. Chem. A 2018, 6, 9699–9707. [Google Scholar] [CrossRef] [Green Version]
- Anelli, S.; Baiutti, F.; Hornés, A.; Bernadet, L.; Torrell, M.; Tarancón, A. Improved mesostructured oxygen electrodes for highly performing solid oxide cells for co-electrolysis of steam and carbon dioxide. J. Mater. Chem. A 2019, 7, 27458–27468. [Google Scholar] [CrossRef]
- Anelli, S.; Hernández, E.; Bernadet, L.; Sun, X.; Hagen, A.; Baiutti, F.; Torrell, M.; Tarancón, A. Co-electrolysis of steam and carbon dioxide in large area solid oxide cells based on infiltrated mesoporous oxygen electrodes. J. Power Sources 2020, 478, 228774. [Google Scholar] [CrossRef]
- Hedayat, N.; Du, Y.; Ilkhani, H. Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods. Renew. Sustain. Energy Rev. 2017, 77, 1221–1239. [Google Scholar] [CrossRef]
- Wan, Y.; Zhao, D. On the Controllable Soft-Templating Approach to Mesoporous Silicates. Chem. Rev. 2007, 107, 2821–2860. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Zhang, J.; Xue, Z.; Han, B.; Sang, X.; Liu, C.; Yang, G. Highly mesoporous metal–organic framework assembled in a switchable solvent. Nat. Commun. 2014, 5, 4465. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Chen, K.; Tüysüz, H. Protocol for the Nanocasting Method: Preparation of Ordered Mesoporous Metal Oxides. Chem. Mater. 2016, 29, 40–52. [Google Scholar] [CrossRef]
- Nie, L.; Liu, M.; Zhang, Y.; Liu, M. La0.6Sr0.4Co0.2Fe0.8O3−δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. J. Power Sources 2010, 195, 4704–4708. [Google Scholar] [CrossRef]
- Wang, F.; Chen, D.; Shao, Z. Sm0.5Sr0.5CoO3−δ-infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. J. Power Sources 2012, 216, 208–215. [Google Scholar] [CrossRef]
- Fan, H.; Keane, M.; Li, N.; Tang, D.; Singh, P.; Han, M. Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3−δ-infiltrated YSZ oxygen electrode for reversible solid oxide fuel cells. Int. J. Hydrogen Energy 2014, 39, 14071–14078. [Google Scholar] [CrossRef]
- Fan, H.; Han, M. Electrochemical stability of Sm0.5Sr0.5CoO3−δ infiltrated YSZ for solid oxide fuel cells or electrolysis cells. Faraday Discuss. 2015, 182, 477–491. [Google Scholar] [CrossRef]
- Burye, T.E.; Nicholas, J. Nano-ceria pre-infiltration improves La0.6Sr0.4Co0.8Fe0.2O3−x infiltrated Solid Oxide Fuel Cell cathode performance. J. Power Sources 2015, 300, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Zhang, Y.; Han, M. Infiltration of La0.6Sr0.4FeO3−δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell. J. Alloys Compd. 2017, 723, 620–626. [Google Scholar] [CrossRef]
- Skafte, T.L.; Hjelm, J.; Blennow, P.; Graves, C.R. Reactivating the Ni-YSZ electrode in solid oxide cells and stacks by infiltration. J. Power Sources 2018, 378, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Ovtar, S.; Brodersen, K.; Hendriksen, P.V.; Chen, M. Large-area solid oxide cells with La0.6Sr0.4CoO3−δ infiltrated oxygen electrodes for electricity generation and hydrogen production. J. Power Sources 2020, 451, 227742. [Google Scholar] [CrossRef]
- Hong, J.; Balamurugan, C.; Im, H.-N.; Jeon, S.-Y.; Yoo, Y.-S.; Song, S.-J. The Electrochemical Properties of Nanocrystalline Gd0.1Ce0.9O1.95 Infiltrated Solid Oxide Co-Electrolysis Cells. J. Electrochem. Soc. 2018, 165, F132–F141. [Google Scholar] [CrossRef] [Green Version]
- Ovtar, S.; Hauch, A.; Veltzé, S.; Chen, M. Comparison between La0.6Sr0.4CoO3−d and LaNi0.6Co0.4O3−d infiltrated oxygen electrodes for long-term durable solid oxide fuel cells. Electrochim. Acta 2018, 266, 293–304. [Google Scholar] [CrossRef]
- Tomov, R.I.; Fakeeh, A.; Krishnan, V.V.; Balasubramanian, K.; Kumar, V.R.; Glowacki, B.A. Direct Ceramic Inkjet Printing and Infiltration of Functional Coatings for Metal Supported SOFC. ECS Trans. 2015, 68, 2491–2501. [Google Scholar] [CrossRef]
- Tomov, R.I.; Duncan, R.; Krauz, M.; Glowacki, B.A.; Kumar, R.V.; Filipowicz, M.; Dudek, M.; Olkuski, T.; Styszko, K. Inkjet printing and inkjet infiltration of functional coatings for SOFCs fabrication. E3S Web Conf. 2016, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Tomov, R.I.; Mitchell-Williams, T.; Gao, C.; Kumar, R.V.; Glowacki, B.A. Performance optimization of LSCF/Gd:CeO2 composite cathodes via single-step inkjet printing infiltration. J. Appl. Electrochem. 2017, 47, 641–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell-Williams, T.B.; Tomov, R.I.; Saadabadi, S.A.; Krauz, M.; Aravind, P.V.; Glowacki, B.A.; Kumar, R.V. Infiltration of commercially available, anode supported SOFC’s via inkjet printing. Mater. Renew. Sustain. Energy 2017, 6, 1–9. [Google Scholar] [CrossRef]
- Wang, C.; Tomov, R.I.; Glowacki, B.A.; Mitchell-Williams, T.B.; Kumar, R.V.; Glowacki, B.A. Inkjet printing infiltration of Ni-Gd:CeO2 anodes for low temperature solid oxide fuel cells. J. Appl. Electrochem. 2017, 47, 1227–1238. [Google Scholar] [CrossRef] [Green Version]
- Tomov, R.I.; Mitchel-Williams, T.B.; Maher, R.; Kerherve, G.; Cohen, L.; Payne, D.J.; Kumar, R.V.; Glowacki, B.A. The synergistic effect of cobalt oxide and Gd-CeO2 dual infiltration in LSCF/CGO cathodes. J. Mater. Chem. A 2018, 6, 5071–5081. [Google Scholar] [CrossRef] [Green Version]
- Venezia, E.; Viviani, M.; Presto, S.; Kumar, R.V.; Tomov, R.I. Inkjet Printing Functionalization of SOFC LSCF Cathodes. Nanomaterials 2019, 9, 654. [Google Scholar] [CrossRef] [Green Version]
- Derby, B. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414. [Google Scholar] [CrossRef]
- Derby, B. Additive Manufacture of Ceramics Components by Inkjet Printing. Engineering 2015, 1, 113–123. [Google Scholar] [CrossRef] [Green Version]
- Hoath, S.D. Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets; John Wiley & Sons: Weinheim, Germany, 2016; Volume 1, ISBN 9783527684724. [Google Scholar]
- Yin, Z.; Huang, Y.; Bu, N.; Wang, X.; Xiong, Y. Inkjet printing for flexible electronics: Materials, processes and equipments. Chin. Sci. Bull. 2010, 55, 3383–3407. [Google Scholar] [CrossRef]
- Sachs, E.; Cima, M.; Williams, P.; Brancazio, D.; Cornie, J. Three Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model. J. Eng. Ind. 1992, 114, 481–488. [Google Scholar] [CrossRef]
- Bietsch, A.; Zhang, J.; Hegner, M.; Lang, H.P.; Gerber, C. Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 2004, 15, 873–880. [Google Scholar] [CrossRef]
- Fasaki, I.; Siamos, K.; Arin, M.; Lommens, P.; Van Driessche, I.; Hopkins, S.; Glowacki, B.; Arabatzis, I. Ultrasound assisted preparation of stable water-based nanocrystalline TiO2 suspensions for photocatalytic applications of inkjet-printed films. Appl. Catal. A Gen. 2012, 411–412, 60–69. [Google Scholar] [CrossRef]
- Farandos, N.; Li, T.; Kelsall, G. 3-D inkjet-printed solid oxide electrochemical reactors. II. LSM-YSZ electrodes. Electrochim. Acta 2018, 270, 264–273. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, L.; Li, L.; Chen, J.; Liu, Y.; Li, Y.; Hao, L.; Wu, Y. 3D printed Sm-doped ceria composite electrolyte membrane for low temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2019, 44, 13843–13851. [Google Scholar] [CrossRef]
- Atkinson, A.; Doorbar, J.; Hudd, A.; Segal, D.L.; White, P.J. Continuous ink-jet printing using sol-gel “Ceramic” inks. J. Sol-Gel Sci. Technol. 1997, 8, 1093–1097. [Google Scholar] [CrossRef]
- Teng, W.D.; Edirisinghe, M.J. Development of Ceramic Inks for Direct Continuous Jet Printing. J. Am. Ceram. Soc. 2005, 81, 1033–1036. [Google Scholar] [CrossRef]
- Tomov, R.; Krauz, M.; Jewulski, J.; Hopkins, S.; Kluczowski, J.; Glowacka, D.; Glowacki, B. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells. J. Power Sources 2010, 195, 7160–7167. [Google Scholar] [CrossRef]
- Liu, Y.; Derby, B. Experimental study of the parameters for stable drop-on-demand inkjet performance. Phys. Fluids 2019, 31, 032004. [Google Scholar] [CrossRef] [Green Version]
- Farandos, N.; Kleiminger, L.; Li, T.; Hankin, A.; Kelsall, G. Three-dimensional Inkjet Printed Solid Oxide Electrochemical Reactors. I. Yttria-stabilized Zirconia Electrolyte. Electrochim. Acta 2016, 213, 324–331. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Tarn, T.-J.; Huang, F.; Fan, J. Recent advances in inkjet printing synthesis of functional metal oxides. Particuology 2015, 19, 1–13. [Google Scholar] [CrossRef]
- Zhong, Y.; Fang, H.; Ma, Q.; Dong, X. Analysis of droplet stability after ejection from an inkjet nozzle. J. Fluid Mech. 2018, 845, 378–391. [Google Scholar] [CrossRef]
- Martin, G.D.; Hoath, S.D.; Hutchings, I.M. Inkjet printing—The physics of manipulating liquid jets and drops. J. Phys. Conf. Ser. 2008, 105, 012001. [Google Scholar] [CrossRef] [Green Version]
- Reis, N.; Derby, B. Ink Jet Deposition of Ceramic Suspensions: Modeling and Experiments of Droplet Formation. MRS Proc. 2000, 625. [Google Scholar] [CrossRef]
- Derby, B. Inkjet printing ceramics: From drops to solid. J. Eur. Ceram. Soc. 2011, 31, 2543–2550. [Google Scholar] [CrossRef]
- Jang, D.; Kim, D.; Moon, J. Influence of Fluid Physical Properties on Ink-Jet Printability. Langmuir 2009, 25, 2629–2635. [Google Scholar] [CrossRef] [PubMed]
- Perelaer, J.J.; Smith, P.J.; Wijnen, M.M.P.; Bosch, E.V.D.; Eckardt, R.R.; Ketelaars, P.H.J.M.; Schubert, U.S. Droplet Tailoring Using Evaporative Inkjet Printing. Macromol. Chem. Phys. 2009, 210, 387–393. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Tsai, M.-H.; Pai, Y.-F.; Hwang, W.-S. Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing. Appl. Phys. A 2013, 111, 509–516. [Google Scholar] [CrossRef]
- Shin, P.; Sung, J.; Lee, M.H. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. Microelectron. Reliab. 2011, 51, 797–804. [Google Scholar] [CrossRef]
- Delrot, P.; Modestino, M.A.; Gallaire, F.; Psaltis, D.; Moser, C. Inkjet Printing of Viscous Monodisperse Microdroplets by Laser-Induced Flow Focusing. Phys. Rev. Appl. 2016, 6, 024003. [Google Scholar] [CrossRef] [Green Version]
- Choi, I.H.; Kim, Y.K.; Lee, S.; Lee, S.H.; Kim, J. A Pneumatic Drop-on-Demand Printing System With an Extended Printable Liquid Range. J. Microelectromec. Syst. 2015, 24, 768–770. [Google Scholar] [CrossRef]
- Tyler, H. Open Source Possibilities for Inkjet 3D Printing, 2014. Advanced Manufacturing Research Institute, Rice University. Available online: https://www.scribd.com/document/414152953/Open-Source-Possibilities-for-Inkjet-3D-Printing-Advanced-Manufacturing-Research-Institute-Rice-University-Harrison-Tyler-2014 (accessed on 14 September 2021).
- Fromm, J.E. Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets. IBM J. Res. Dev. 1984, 28, 322–333. [Google Scholar] [CrossRef]
- Nallan, H.C.; Sadie, J.A.; Kitsomboonloha, R.; Volkman, S.K.; Subramanian, V. Systematic Design of Jettable Nanoparticle-Based Inkjet Inks: Rheology, Acoustics, and Jettability. Langmuir 2014, 30, 13470–13477. [Google Scholar] [CrossRef]
- Hoath, S.D.; Hsiao, W.-K.; Jung, S.; Martin, G.D.; Hutchings, I.M.; Morrison, N.F.; Harlen, O.G. Drop Speeds from Drop-on-Demand Ink-Jet Print Heads. J. Imaging Sci. Technol. 2013, 57, 1–11. [Google Scholar] [CrossRef]
- Elshof, J.E.T.; Boeijsma, J. Influence of iron content on cell parameters of rhombohedral La0.6Sr0.4Co1−yFeyO3. Powder Diffr. 1996, 11, 240–245. [Google Scholar] [CrossRef]
- Sammes, N. Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials. Solid State Ionics 1997, 100, 39–44. [Google Scholar] [CrossRef]
- Lamas, D.G.; De Reca, N.E.W. X-ray diffraction study of compositionally homogeneous, nanocrystalline yttria-doped zirconia powders. J. Mater. Sci. 2000, 35, 5563–5567. [Google Scholar] [CrossRef]
- Almar, L.; Colldeforns, B.; Yedra, L.; Estradé, S.; Peiró, F.; Morata, A.; Andreu, T.; Tarancón, A. High-temperature long-term stable ordered mesoporous Ni–CGO as an anode for solid oxide fuel cells. J. Mater. Chem. A 2013, 1, 4531–4538. [Google Scholar] [CrossRef]
- Sanna, C.; Zhang, W.; Costamagna, P.; Holtappels, P. Synthesis and electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3−δ/Ce0.9Gd0.1O1.95 co-electrospun nanofiber cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2020, 46, 13818–13831. [Google Scholar] [CrossRef]
- Nielsen, J.; Jacobsen, T.; Wandel, M. Impedance of porous IT-SOFC LSCF:CGO composite cathodes. Electrochim. Acta 2011, 56, 7963–7974. [Google Scholar] [CrossRef]
- Ghatee, M.; Shariat, M.; Irvine, J. Investigation of electrical and mechanical properties of 3YSZ/8YSZ composite electrolytes. Solid State Ionics 2009, 180, 57–62. [Google Scholar] [CrossRef]
- Nechache, A.; Cassir, M.; Ringuedé, A. Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review. J. Power Sources 2014, 258, 164–181. [Google Scholar] [CrossRef]
- Baiutti, F.; Blanco-Portals, J.; Anelli, S.; Torruella, P.; López-Haro, M.; Calvino, J.; Estradé, S.; Torrell, M.; Peiró, F.; Tarancón, A. Tailoring the Transport Properties of Mesoporous Doped Cerium Oxide for Energy Applications. J. Phys. Chem. C 2021, 125, 16451–16463. [Google Scholar] [CrossRef]
- Baumann, F.S.; Fleig, J.; Habermeier, H.; Maier, J. Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes. Solid State Ionics 2006, 177, 1071–1081. [Google Scholar] [CrossRef]
- Carey, P.H.; Ren, F.; Hays, D.C.; Gila, B.P.; Pearton, S.J.; Jang, S.; Kuramata, A. Band alignment of atomic layer deposited SiO2 and HfSiO4 with β-Ga2O3. Jpn. J. Appl. Phys. 2017, 56, 071101. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, Z.; Fan, X.; Xia, C. LSM–SDC electrodes fabricated with an ion-impregnating process for SOFCs with doped ceria electrolytes. Solid State Ionics 2006, 177, 2113–2117. [Google Scholar] [CrossRef]
- Ghom, S.A.; Zamani, C.; Nazarpour, S.; Andreu, T.; Morante, J. Oxygen sensing with mesoporous ceria–zirconia solid solutions. Sens. Actuators B Chem. 2009, 140, 216–221. [Google Scholar] [CrossRef]
- Druce, J.; Kilner, J.A. Improvement of Oxygen Surface Exchange Kinetics for CGO with Surface Treatment. J. Electrochem. Soc. 2013, 161, F99–F104. [Google Scholar] [CrossRef]
CELL | Scaffold | Infiltration | Saturation |
---|---|---|---|
CGO | Commercial CGO | No | - |
5-CGO | Commercial CGO | Yes | 5/20 sat. |
10-CGO | Commercial CGO | Yes | 10/20 sat. |
10-CGOmeso | Mesoporous CGO | Yes | 10/20 sat. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anelli, S.; Moreno-Sanabria, L.; Baiutti, F.; Torrell, M.; Tarancón, A. Solid Oxide Cell Electrode Nanocomposites Fabricated by Inkjet Printing Infiltration of Ceria Scaffolds. Nanomaterials 2021, 11, 3435. https://doi.org/10.3390/nano11123435
Anelli S, Moreno-Sanabria L, Baiutti F, Torrell M, Tarancón A. Solid Oxide Cell Electrode Nanocomposites Fabricated by Inkjet Printing Infiltration of Ceria Scaffolds. Nanomaterials. 2021; 11(12):3435. https://doi.org/10.3390/nano11123435
Chicago/Turabian StyleAnelli, Simone, Luis Moreno-Sanabria, Federico Baiutti, Marc Torrell, and Albert Tarancón. 2021. "Solid Oxide Cell Electrode Nanocomposites Fabricated by Inkjet Printing Infiltration of Ceria Scaffolds" Nanomaterials 11, no. 12: 3435. https://doi.org/10.3390/nano11123435
APA StyleAnelli, S., Moreno-Sanabria, L., Baiutti, F., Torrell, M., & Tarancón, A. (2021). Solid Oxide Cell Electrode Nanocomposites Fabricated by Inkjet Printing Infiltration of Ceria Scaffolds. Nanomaterials, 11(12), 3435. https://doi.org/10.3390/nano11123435