A Bibliometric Analysis and Review of Supercritical Fluids for the Synthesis of Nanomaterials
Abstract
:1. Introduction
2. Data Sources and Methodology
3. Results and Discussion
3.1. Publication and Trends Analysis
3.2. Contribution of Country and Institution
3.3. Author Keywords Analysis
4. Hot Issues and Future Trends
4.1. Supercritical Fluids for the Synthesis of Nanomaterials
4.1.1. Supercritical Water for the Synthesis of Nanomaterials
4.1.2. Supercritical CO2 for the Synthesis of Nanomaterials
4.2. Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, J.; Zhang, S.; Chen, J. Supercritical Water Gasification and Catalytic Supercritical Water Gasification of Petrochemical Sludge. Oxid. Commun. 2015, 38, 1862–1867. [Google Scholar]
- Muhammad Ashraf, W.; Moeen Uddin, G.; Muhammad Arafat, S.; Afghan, S.; Hassan Kamal, A.; Asim, M.; Haider Khan, M.; Waqas Rafique, M.; Naumann, U.; Niazi, S.G. Optimization of a 660 Mwe Supercritical Power Plant Performance Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency. Energies 2020, 13, 5592. [Google Scholar] [CrossRef]
- Hsu, R.C.; Lin, B.H.; Chen, C.W. The Study of Supercritical Carbon Dioxide Extraction for Ganoderma Lucidum. Ind. Eng. Chem. Res. 2001, 40, 4078–4481. [Google Scholar] [CrossRef]
- Rozzi, N.L.; Singh, R.K. Supercritical Fluids and the Food Industry. Compr. Rev. Food Sci. Food Saf. 2010, 1, 33–44. [Google Scholar] [CrossRef]
- Byrappa, K.; Ohara, S.; Adschiri, T. Nanoparticles Synthesis Using Supercritical Fluid Technology-Towards Biomedical Applications. Adv. Drug Deliv. Rev. 2008, 60, 299–327. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.S.; Dar, C.L.; Kaushik, B.S.; Yadav, A.J.P. Identification and Characterization of New Potent Inhibitors of Dengue Virus NS5 Proteinase from Andrographis Paniculata Supercritical Extracts on in Animal Cell Culture and in Silico Approaches. J. Ethnopharmacol. 2020, 267, 113541–113549. [Google Scholar] [CrossRef]
- Vallejo, R.; Arias, F.J.; Santos, M.; Rodriguez-Rojo, S.; Valdivieso, J.G. Production of Elastin-Like Recombinamer-Based Nanoparticles for Docetaxel Encapsulation and Use as Smart Drug-Delivery Systems Using a Supercritical Anti-Solvent Process. J. Ind. Eng. Chem. 2021, 93, 361–374. [Google Scholar] [CrossRef]
- Cardea, S.; Baldino, L.; Reverchon, E. Comparative Study of Pvdf-Hfp-Curcumin Porous Structures Produced by Supercritical Assisted Processes. J. Supercrit. Fluids 2017, 133, 270–277. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, W.; Huang, R.; Zhang, Y.; Jia, C.; Zhao, H.; Chen, W.; Xue, Y. Fabrication and Characterization of Cellulose Nanofiber Aerogels Prepared Via Two Different Drying Techniques. Polymers 2020, 12, 2583. [Google Scholar] [CrossRef]
- Reverchon, E.; Adami, R. Nanomaterials and Supercritical Fluids. J. Supercrit. Fluids 2005, 37, 1–22. [Google Scholar] [CrossRef]
- Savage, P.E.; Gopalan, S.; Mizan, T.I.; Martino, C.J.; Brock, E.E. Reactions at Supercritical Conditions: Applications and Fundamentals. Aiche J. 1995, 41, 1723–1778. [Google Scholar] [CrossRef] [Green Version]
- Cansell, F.; Aymonier, C. Design of Functional Nanostructured Materials Using Supercritical Fluids. J. Supercrit. Fluids 2008, 47, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Hu, B. Macro/Microbehavior of Shale Rock under the Dynamic Impingement of a High-Pressure Supercritical Carbon Dioxide Jet. Rsc Adv. 2018, 8, 38065–38074. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Lin, K.Y.; Tsai, W.T.; Chang, J.K.; Tseng, C.M. Electroless Deposition of Ni Nanoparticles on Carbon Nanotubes with the Aid of Supercritical CO2 Fluid and a Synergistic Hydrogen Storage Property of the Composite. Int. J. Hydrogen Energy 2010, 35, 5490–5497. [Google Scholar] [CrossRef]
- Ruiz-Jorge, F.; Portela, J.R.; Sánchez-Oneto, J.; de la Ossa, E.J.M. Synthesis of Micro- and Nanoparticles in Sub- and Supercritical Water: From the Laboratory to Larger Scales. Appl. Sci. 2020, 10, 5508. [Google Scholar] [CrossRef]
- Lane, M.K.M.; Zimmerman, J.B. Controlling Metal Oxide Nanoparticle Size and Shape with Supercritical Fluid Synthesis. Green Chem. 2019, 21, 3769–3781. [Google Scholar] [CrossRef]
- Ye, X.; Wai, C.M. Making Nanomaterials in Supercritical Fluids: A Review. J. Chem. Educ. 2003, 80, 198–204. [Google Scholar] [CrossRef]
- Wang, L.; Zhuo, L.; Zhang, C.; Zhao, F. Supercritical Carbon Dioxide Assisted Deposition of Fe3O4 Nanoparticles on Hierarchical Porous Carbon and Their Lithium—Storage Performance. Chem.-A Eur. J. 2014, 20, 4308–4315. [Google Scholar] [CrossRef]
- Adschiri, T.; Hakuta, Y.; Sue, K.; Arai, K. Hydrothermal Synthesis of Metal Oxide Nanoparticles at Supercritical Conditions. J. Nanopart. Res. 2001, 3, 227–235. [Google Scholar] [CrossRef]
- Dvorikova, R.A.; Nikitin, L.N.; Korshak, Y.V.; Shanditsev, V.A.; Rusanov, A.L.; Abramchuk, S.S.; Khokhlov, A.R. New Magnetic Nanomaterials of Hyperbranched Ferrocene-Containing Polyphenylenes Prepared in Liquid and Supercritical Carbon Dioxide. J. Balk. Tribol. Assoc. 2009, 15, 329–335. [Google Scholar]
- Camarillo, R.; Tostón, S.; Martínez, F.; Jiménez, C.; Rincón, J. Preparation of TiO2-Based Catalysts with Supercritical Fluid Technology: Characterization and Photocatalytic Activity in CO2 Reduction. J. Chem. Technol. Biotechnol. 2017, 92, 1710–1720. [Google Scholar] [CrossRef]
- Xu, C.; Teja, A.S. Supercritical Water Synthesis and Deposition of Iron Oxide (α-Fe2O3) Nanoparticles in Activated Carbon. J. Supercrit. Fluids 2006, 39, 135–141. [Google Scholar] [CrossRef]
- Bocquet, J.F.; Chhor, K.; Pommier, C. Barium Titanate Powders Synthesis from Solvothermal Reaction and Supercritical Treatment. Mater. Chem. Phys. 1999, 57, 273–280. [Google Scholar] [CrossRef]
- Philippot, G.; Elissalde, C.; Maglione, M.; Aymonier, C. Supercritical Fluid Technology: A Reliable Process for High Quality BaTiO3 Based Nanomaterials. Adv. Powder Technol. 2014, 25, 1415–1429. [Google Scholar] [CrossRef]
- Lester, E.; Blood, P.; Denyer, J.; Giddings, D.; Poliakoff, M. Reaction Engineering: The Supercritical Water Hydrothermal Synthesis of Nano-Particles. J. Supercrit. Fluids 2006, 37, 209–214. [Google Scholar] [CrossRef]
- Matsui, K.; Noguchi, T.; Islam, N.M.; Hakuta, Y.; Hayashi, H. Rapid Synthesis of BaTiO3 Nanoparticles in Supercritical Water by Continuous Hydrothermal Flow Reaction System. J. Cryst. Growth 2008, 310, 2584–2589. [Google Scholar] [CrossRef]
- Adschiri, T.; Lee, Y.W.; Goto, M.; Takami, S. Green Materials Synthesis with Supercritical Water. Green Chem. 2011, 13, 1380–1390. [Google Scholar] [CrossRef]
- Hakuta, Y.; Takashima, H.; Takesada, M. Hydrothermal Synthesis of Perovskite Metal Oxide Nanoparticles in Supercritical Water. Ferroelectrics 2019, 539, 1–8. [Google Scholar] [CrossRef]
- Lam, U.T.; Mammucari, R.; Suzuki, K.; Foster, N.R. Processing of Iron Oxide Nanoparticles by Supercritical Fluids. Indengchemres 2008, 47, 599–614. [Google Scholar] [CrossRef]
- Atashfaraz, M.; Shariaty-Niassar, M.; Kimitaka, S.O. Effect of Titanium Dioxide Solubility on the Formation of BaTiO3 Nanoparticles in Supercritical Water. Fluid Phase Equilibria 2007, 257, 233–237. [Google Scholar] [CrossRef]
- Zhu, K.; Hu, G. Supercritical Hydrothermal Synthesis of Titanium Dioxide Nanostructures with Controlled Phase and Morphology. J. Supercrit. Fluids 2014, 94, 165–173. [Google Scholar] [CrossRef]
- Cote, L.J.; Teja, A.S.; Wilkinson, A.P.; Zhang, Z.J. Continuous Hydrothermal Synthesis and Crystallization of Magnetic Oxide Nanoparticles. J. Mater. Res. 2002, 17, 2410–2416. [Google Scholar] [CrossRef]
- Desimone, J.M. Practical Approaches to Green Solvents. Science 2002, 297, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Poliakoff, M. Continuous Reactions in Supercritical Carbon Dioxide: Problems, Solutions and Possible Ways Forward. Chem. Soc. Rev. 2012, 41, 1428–1436. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Musumeci, V.; Aymonier, C. Chemistry in Supercritical Fluids for the Synthesis of Metal Nanomaterials. React. Chem. Eng. 2019, 4, 2030–2054. [Google Scholar] [CrossRef]
- Quigley, J.P.; Herrington, K.; Bortner, M.; Baird, D.G. Benign Reduction of Carbon Nanotube Agglomerates Using a Supercritical Carbon Dioxide Process. Appl. Phys. A 2014, 117, 1003–1017. [Google Scholar] [CrossRef]
- Meng, Y.; Su, F.; Chen, Y. A Novel Nanomaterial of Graphene Oxide Dotted with Ni Nanoparticles Produced by Supercritical CO2-Assisted Deposition for Reducing Friction and Wear. Acs Appl. Mater. Interfaces 2015, 7, 11604–11612. [Google Scholar] [CrossRef]
- Dvorikova, R.A.; Nikitin, L.N.; Korshak, Y.V.; Shanditsev, V.A.; Rusanov, A.L.; Abramchuk, S.S.; Khokhlov, A.R. New Magnetic Nanomaterials Based on Hyperbranched Ferrocene-Containing Polyphenylenes Synthesized in Sub-and Supercritical Carbon Dioxide. Dokl. Chem. 2008, 422, 231–235. [Google Scholar] [CrossRef]
- Wu, C.I.; Huang, J.W.; Wen, Y.L.; Wen, S.B.; Shen, Y.H.; Yeh, M.Y. Preparation of TiO2 Nanoparticles by Supercritical Carbon Dioxide. Mater. Lett. 2008, 62, 1923–1926. [Google Scholar] [CrossRef]
- Yan, S.; Liu, Z.; Wei, X.; Cheng, Y.; Shi, Y.; Hu, D.; Xu, X. Preparation and Photoelectrochemical Properties of CdS Nanoparticles Using Supercritical Carbon Dioxide. J. Nanosci. Nanotechnol. 2016, 16, 7203–7209. [Google Scholar] [CrossRef]
- Aymonier, C.; Erriguible, A.; Marre, S.; Serani, A.; Cansell, F. Processes Using Supercritical Fluids: A Sustainable Approach for the Design of Functional Nanomaterials. Int. J. Chem. React. Eng. 2007, 5, 523–533. [Google Scholar] [CrossRef]
- Teja, A.S.; Koh, P.Y. Synthesis, Properties, and Applications of Magnetic Iron Oxide Nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22–45. [Google Scholar] [CrossRef]
- Choi, J.; Shin, C.; Yang, J.; Chae, S.K.; Kim, T. Effect of Ceria Abrasive Synthesized by Supercritical Hydrothermal Method for Chemical Mechanical Planarization. ECS J. Solid State Sci. Technol. 2019, 8, 3128–3132. [Google Scholar] [CrossRef]
- Aoki, N.; Sato, A.; Sasaki, H.; Litwinowicz, A.; Adschiri, T. Kinetics Study to Identify Reaction-Controlled Conditions for Supercritical Hydrothermal Nanoparticle Synthesis with Flow-Type Reactors. J. Supercrit. Fluids 2016, 110, 161–166. [Google Scholar] [CrossRef] [Green Version]
Rank | Country | TC | TC R(%) | SC R(%) | CC R(%) | FC R(%) | RC R(%) |
---|---|---|---|---|---|---|---|
1 | USA | 975 | 1 (29.78) | 2 (21.90) | 1 (55.54) | 2 (21.62) | 2 (21.71) |
2 | China | 972 | 2 (29.69) | 1 (29.80) | 2 (29.34) | 1 (26.91) | 1 (26.67) |
3 | Japan | 386 | 3 (11.79) | 3 (11.05) | 4 (14.21) | 3 (9.93) | 3 (9.94) |
4 | South Korea | 208 | 4 (6.35) | 4 (5.82) | 8 (8.08) | 4 (5.65) | 4 (5.69) |
5 | Spain | 193 | 5 (5.89) | 8 (3.31) | 3 (14.34) | 7 (4.31) | 7 (4.34) |
6 | Iran | 183 | 6 (5.59) | 6 (4.67) | 6 (8.60) | 5 (4.73) | 5 (4.62) |
7 | France | 173 | 7 (5.28) | 9 (3.11) | 5 (12.39) | 9 (3.15) | 9 (3.36) |
8 | Russia | 168 | 8 (5.13) | 5 (4.83) | 9 (6.13) | 6 (4.49) | 6 (4.50) |
9 | Italy | 153 | 9 (4.67) | 7 (3.59) | 7 (8.21) | 8 (3.73) | 8 (3.79) |
10 | India | 90 | 10 (2.75) | 10 (2.15) | 11 (4.69) | 10 (2.05) | 10 (2.02) |
Rank | Country | USA | % | Rank | Country | China | % |
---|---|---|---|---|---|---|---|
1 | China | 113 | 21.81 | 1 | USA | 113 | 42.32 |
2 | France | 49 | 9.46 | 2 | Japan | 30 | 11.24 |
3 | Spain | 39 | 7.53 | 3 | Iran | 13 | 4.87 |
4 | Japan | 38 | 7.34 | 4 | Canada | 9 | 3.37 |
5 | Saudi Arabia | 34 | 6.56 | 5 | Spain | 9 | 3.37 |
6 | South Korea | 32 | 6.18 | 6 | Sweden | 7 | 2.62 |
7 | Italy | 26 | 5.02 | 7 | Brazil | 7 | 2.62 |
8 | Turkey | 21 | 4.05 | 8 | Australia | 6 | 2.25 |
9 | Russia | 15 | 2.90 | 9 | South Korea | 6 | 2.25 |
10 | UK | 13 | 2.51 | 10 | India | 6 | 2.25 |
Rank | Institution | TI | TI R(%) | SI R(%) | CI R(%) | FI R(%) | RI R(%) |
---|---|---|---|---|---|---|---|
1 | Chinese Academy of Sciences, China | 167 | 1 (5.10) | 1 (5.08) | 1 (5.12) | 1 (3.70) | 1 (3.61) |
2 | Tohoku University, Japan | 118 | 2 (3.60) | 3 (3.10) | 2 (3.99) | 2 (2.63) | 2 (2.66) |
3 | Russian Academy of Sciences, Russia | 89 | 3 (2.72) | 4 (1.97) | 3 (3.29) | 4 (2.08) | 4 (2.02) |
4 | University of Salerno, Italy | 86 | 4 (2.63) | 2 (4.02) | 11 (1.35) | 3 (2.50) | 3 (2.45) |
5 | National Institute of Advanced Industrial Science and Technology, Japan | 66 | 5 (2.02) | 10 (1.27) | 5 (2.59) | 5 (1.37) | 5 (1.41) |
6 | Korea Advanced Institute of Science and Technology, South Korea | 58 | 6 (1.77) | 72 (0.28) | 4 (2.91) | 7 (1.13) | 9 (0.83) |
7 | Moscow State University, Russia | 53 | 7 (1.62) | 22 (0.71) | 6 (2.32) | 14 (0.73) | 13 (0.73) |
8 | Aarhus University, Denmark | 49 | 8 (1.50) | 6 (1.48) | 10 (1.40) | 6 (1.22) | 6 (1.25) |
9 | University of Idaho, USA | 46 | 9 (1.41) | 6 (1.48) | 11 (1.35) | 8 (0.92) | 7 (0.92) |
10 | University of Bordeaux, France | 45 | 10 (1.37) | 43 (0.42) | 7 (2.10) | 18 (0.61) | 24 (0.55) |
Rank | Author Keyword | 98-19 TP | 98-19 R(%) |
---|---|---|---|
1 | nanoparticles | 546 | 1 (24.35) |
2 | supercritical carbon dioxide | 407 | 2 (18.15) |
3 | supercritical fluids | 261 | 3 (11.64) |
4 | supercritical water | 122 | 4 (5.44) |
5 | microparticles | 74 | 5 (3.30) |
6 | supercritical antisolvent | 61 | 6 (2.72) |
7 | aerogel | 55 | 7 (2.45) |
8 | hydrothermal synthesis | 52 | 8 (2.32) |
9 | sol-gel | 52 | 8 (2.32) |
10 | supercritical | 49 | 10 (2.19) |
11 | hydrogenation | 43 | 11 (1.91) |
12 | palladium | 36 | 12 (1.60) |
13 | carbon nanotubes | 35 | 13 (1.56) |
14 | platinum | 32 | 14 (1.42) |
15 | adsorption | 31 | 15 (1.38) |
16 | ress | 30 | 16 (1.34) |
17 | zinc oxide | 30 | 16 (1.34) |
18 | surface modification | 30 | 16 (1.34) |
19 | photocatalysis | 30 | 16 (1.34) |
20 | supercritical methanol | 26 | 20 (1.16) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, W.; Zhang, H.; Xing, Y.; Li, X.; Wang, J.; Cai, C. A Bibliometric Analysis and Review of Supercritical Fluids for the Synthesis of Nanomaterials. Nanomaterials 2021, 11, 336. https://doi.org/10.3390/nano11020336
Su W, Zhang H, Xing Y, Li X, Wang J, Cai C. A Bibliometric Analysis and Review of Supercritical Fluids for the Synthesis of Nanomaterials. Nanomaterials. 2021; 11(2):336. https://doi.org/10.3390/nano11020336
Chicago/Turabian StyleSu, Wei, Hongshuo Zhang, Yi Xing, Xinyan Li, Jiaqing Wang, and Changqing Cai. 2021. "A Bibliometric Analysis and Review of Supercritical Fluids for the Synthesis of Nanomaterials" Nanomaterials 11, no. 2: 336. https://doi.org/10.3390/nano11020336
APA StyleSu, W., Zhang, H., Xing, Y., Li, X., Wang, J., & Cai, C. (2021). A Bibliometric Analysis and Review of Supercritical Fluids for the Synthesis of Nanomaterials. Nanomaterials, 11(2), 336. https://doi.org/10.3390/nano11020336