Quenching of the Eu3+ Luminescence by Cu2+ Ions in the Nanosized Hydroxyapatite Designed for Future Bio-Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Powder Characterization
3. Results and Discussion
3.1. Structural Analysis
3.2. Absorption, Excitation, and Emission Spectra
3.3. Decay Profiles
3.4. The EPR Spectra Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pogosova, M.A.; González, L.V. Influence of anion substitution on the crystal structure and color properties of copper-doped strontium hydroxyapatite. Ceram. Int. 2018, 44, 20140–20147. [Google Scholar] [CrossRef]
- Zawisza, K.; Sobierajska, P.; Renaudin, G.; Nedelec, J.-M.; Wiglusz, R.J. Effects of crystalline growth on structural and luminescence properties of Ca(10−3x)Eu2x(PO4)6F2 nanoparticles fabricated by using a microwave driven hydrothermal process. CrystEngComm 2017, 19, 6936–6949. [Google Scholar] [CrossRef]
- Bal, Z.; Kaito, T.; Korkusuz, F.; Yoshikawa, H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Mater. 2019. [Google Scholar] [CrossRef]
- Pajor, K.; Pajchel, L.; Kolmas, J. Hydroxyapatite and fluorapatite in conservative dentistry and oral implantology-a review. Materials (Basel) 2019, 12, 2683. [Google Scholar] [CrossRef] [Green Version]
- Neacsu, I.A.; Stoica, A.E.; Vasile, B.S.; Andronescu, E. Luminescent Hydroxyapatite Doped with Rare Earth Elements for Biomedical Applications. Nanomaterials 2019, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Szyszka, K.; Rewak-Soroczynska, J.; Dorotkiewicz-Jach, A.; Ledwa, K.A.; Piecuch, A.; Giersig, M.; Drulis-Kawa, Z.; Wiglusz, R.J. Structural modification of nanohydroxyapatite Ca10(PO4)6(OH)2 related to Eu3+ and Sr2+ ions doping and its spectroscopic and antimicrobial properties. J. Inorg. Biochem. 2020, 203, 110884. [Google Scholar] [CrossRef]
- Shanmugam, S.; Gopal, B. Copper substituted hydroxyapatite and fluorapatite: Synthesis, characterization and antimicrobial properties. Ceram. Int. 2014, 40, 15655–15662. [Google Scholar] [CrossRef]
- Wiglusz, R.J.; Drulis-Kawa, Z.; Pazik, R.; Zawisza, K.; Dorotkiewicz-Jach, A.; Roszkowiak, J.; Nedelec, J.M. Multifunctional lanthanide and silver ion co-doped nano-chlorapatites with combined spectroscopic and antimicrobial properties. Dalt. Trans. 2015, 44, 6918–6925. [Google Scholar] [CrossRef] [Green Version]
- Zawisza, K.; Sobierajska, P.; Nowak, N.; Kedziora, A.; Korzekwa, K.; Pozniak, B.; Tikhomirov, M.; Miller, J.; Mrowczynska, L.; Wiglusz, R.J. Preparation and preliminary evaluation of bio-nanocomposites based on hydroxyapatites with antibacterial properties against anaerobic bacteria. Mater. Sci. Eng. C 2020, 106, 110295. [Google Scholar] [CrossRef]
- Riaz, M.; Zia, R.; Ijaz, A.; Hussain, T.; Mohsin, M.; Malik, A. Synthesis of monophasic Ag doped hydroxyapatite and evaluation of antibacterial activity. Mater. Sci. Eng. C 2018, 90, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Stanić, V.; Dimitrijević, S.; Antić-Stanković, J.; Mitrić, M.; Jokić, B.; Plećaš, I.B.; Raičević, S. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 2010, 256, 6083–6089. [Google Scholar] [CrossRef]
- Kim, T.N.; Feng, Q.L.; Kim, J.O.; Wu, J.; Wang, H.; Chen, G.C.; Cui, F.Z. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J. Mater. Sci. Mater. Med. 1998, 9, 129–134. [Google Scholar] [CrossRef]
- Kolmas, J.; Groszyk, E.; Kwiatkowska-Rózycka, D. Substituted hydroxyapatites with antibacterial properties. Biomed Res. Int. 2014, ID 178123, 1–15. [Google Scholar] [CrossRef]
- Huang, Y.; Hao, M.; Nian, X.; Qiao, H.; Zhang, X.; Zhang, X.; Song, G.; Guo, J.; Pang, X.; Zhang, H. Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition. Ceram. Int. 2016, 42, 11876–11888. [Google Scholar] [CrossRef]
- Pogosova, M.A.; Kasin, P.E.; Tretyakov, Y.D.; Jansen, M. Synthesis, structural features, and color of calcium-yttrium hydroxyapatite with copper ions in hexagonal channels. Russ. J. Inorg. Chem. 2013, 58, 381–386. [Google Scholar] [CrossRef]
- Kazin, P.E.; Zykin, M.A.; Zubavichus, Y.V.; Magdysyuk, O.V.; Dinnebier, R.E.; Jansen, M. Identification of the chromophore in the apatite pigment [Sr10(PO4)6(CuxOH1-x-y)2]: Linear OCuO- featuring a resonance raman effect, an extreme magnetic anisotropy, and slow spin relaxation. Chem. A Eur. J. 2014, 20, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Pogosova, M.A.; Eliseev, A.A.; Kazin, P.E.; Azarmi, F. Synthesis, structure, luminescence, and color features of the Eu- and Cu-doped calcium apatite. Dye. Pigment. 2017, 141, 209–216. [Google Scholar] [CrossRef]
- Kazin, P.E.; Zykin, M.A.; Schnelle, W.; Felser, C.; Jansen, M. Rich diversity of single-ion magnet features in the linearOCuIIIO- ion confined in the hexagonal channels of alkaline-earth phosphate apatites. Chem. Commun. 2014, 50, 9325–9328. [Google Scholar] [CrossRef]
- Zawisza, K.; Strzep, A.; Wiglusz, R.J. Influence of annealing temperature on the spectroscopic properties of hydroxyapatite analogues doped with Eu3+. New J. Chem. 2017, 41, 9990–9999. [Google Scholar] [CrossRef]
- Syamchand, S.S.; Sony, G. Europium enabled luminescent nanoparticles for biomedical applications. J. Lumin. 2015, 165, 190–215. [Google Scholar] [CrossRef]
- Hassan, M.N.; Mahmoud, M.M.; El-Fattah, A.A.; Kandil, S. Microwave-assisted preparation of Nano-hydroxyapatite for bone substitutes. Ceram. Int. 2016, 42, 3725–3744. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Deng, H.; Yao, S.; Wang, Y. Regulatory synthesis and characterization of hydroxyapatite nanocrystals by a microwave-assisted hydrothermal method. Ceram. Int. 2020, 46, 2185–2193. [Google Scholar] [CrossRef]
- Jabalera, Y.; Oltolina, F.; Prat, M.; Jimenez-Lopez, C.; Fernández-Sánchez, J.F.; Choquesillo-Lazarte, D.; Gómez-Morales, J. Eu-doped citrate-coated carbonated apatite luminescent nanoprobes for drug delivery. Nanomaterials 2020, 10, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondal, S.; Hoang, G.; Manivasagan, P.; Kim, H.; Oh, J. Nanostructured hollow hydroxyapatite fabrication by carbon templating for enhanced drug delivery and biomedical applications. Ceram. Int. 2019, 45, 17081–17093. [Google Scholar] [CrossRef]
- Targonska, S.; Rewak-Soroczynska, J.; Piecuch, A.; Paluch, E.; Szymanski, D.; Wiglusz, R.J. Preparation of a New Biocomposite Designed for Cartilage Grafting with Antibiofilm Activity. ACS Omega 2020, 5, 24546–24557. [Google Scholar] [CrossRef]
- Targonska, S.; Wiglusz, R.J. Investigation of Physicochemical Properties of the Structurally Modified Nanosized Silicate-Substituted Hydroxyapatite Co-Doped with Eu3+ and Sr2+ Ions. Nanomaterials 2021, 11. [Google Scholar]
- Escudero, A.; Calvo, M.E.; Rivera-Fernández, S.; de la Fuente, J.M.; Ocaña, M. Microwave-Assisted Synthesis of Biocompatible Europium-Doped Calcium Hydroxyapatite and Fluoroapatite Luminescent Nanospindles Functionalized with Poly(acrylic acid). Langmuir 2013, 29, 1985–1994. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Jeong, K.-J.; Kim, J.; Kang, S.W.; Kang, J.; Han, I.H.; Lee, I.-W.; Oh, S.-J.; Lee, J. Emission-tunable probes using terbium(III)-doped self-activated luminescent hydroxyapatite for in vitro bioimaging. J. Colloid Interface Sci. 2021, 581, 21–30. [Google Scholar] [CrossRef]
- Muresan, L.E.; Perhaita, I.; Prodan, D.; Borodi, G. Studies on terbium doped apatite phosphors prepared by precipitation under microwave conditions. J. Alloys Compd. 2018, 755, 135–146. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, S.; Qiu, J.; Li, J.; Sang, Y.; Xia, H.; Jiang, H.; Claverie, J.; Liu, H. Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging. Nanoscale 2016, 8, 11580–11587. [Google Scholar] [CrossRef]
- Targonska, S.; Szyszka, K.; Rewak-Soroczynska, J.; Wiglusz, R.J. A new approach to spectroscopic and structural studies of the nano-sized silicate-substituted hydroxyapatite doped with Eu3+ ions. Dalt. Trans. 2019. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, B.; Vijayalakshmi, U. Development of cerium and silicon co-doped hydroxyapatite nanopowder and its in vitro biological studies for bone regeneration applications. Adv. Powder Technol. 2018, 29, 2792–2803. [Google Scholar] [CrossRef]
- Yoder, C.H.; Havlusch, M.D.; Dudrick, R.N.; Schermerhorn, J.T.; Tran, L.K.; Deymier, A.C. The synthesis of phosphate and vanadate apatites using an aqueous one-step method. Polyhedron 2017, 127, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, D.; Nakamura, M.; Nagai, S.; Aizawa, M. Fabrications of boron-containing apatite ceramics via ultrasonic spray-pyrolysis route and their responses to immunocytes. J. Mater. Sci. Mater. Med. 2020, 31. [Google Scholar] [CrossRef]
- Gómez-Morales, J.; Verdugo-Escamilla, C.; Fernández-Penas, R.; Parra-Milla, C.M.; Drouet, C.; Maube-Bosc, F.; Oltolina, F.; Prat, M.; Fernández-Sánchez, J.F. Luminescent biomimetic citrate-coated europium-doped carbonated apatite nanoparticles for use in bioimaging: Physico-chemistry and cytocompatibility. RSC Adv. 2018, 8, 2385–2397. [Google Scholar] [CrossRef] [Green Version]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.-R. MAUD: A friendly Java program for Material Analysis Using Diffraction. IUCr Newsl. CPD 1999, 21, 14–15. [Google Scholar] [CrossRef] [Green Version]
- Balan, E.; Delattre, S.; Roche, D.; Segalen, L.; Morin, G.; Guillaumet, M.; Blanchard, M.; Lazzeri, M.; Brouder, C.; Salje, E.K.H. Line-broadening effects in the powder infrared spectrum of apatite. Phys Chem Miner. 2011, 38, 111–122. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Jiménez, J.A. Photoluminescence of Eu3+-doped glasses with Cu2+ impurities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 145, 482–486. [Google Scholar] [CrossRef]
- Lakshmi Reddy, S.; Endo, T.; Siva Reddy, G. Electronic (Absorption) Spectra of 3d Transition Metal Complexes. In Advanced Aspects of Spectroscopy; Farrukh, M.A., Ed.; IntechOpen: London, UK, 2012; pp. 3–48. [Google Scholar]
- Orihashi, T.; Nakamura, T.; Adachi, S. Synthesis and Unique Photoluminescence Properties of Eu2Ti2O7 and Eu2TiO5. J. Am. Ceram. Soc. 2016, 99, 3039–3046. [Google Scholar] [CrossRef]
- Wang, S.; Wei, W.; Zhou, X.; Li, Y.; Hua, G.; Li, Z.; Wang, D.; Mao, Z.; Zhang, Z.; Ying, Z. Comparative study of the luminescence properties of Ca2+xLa8-x(SiO4)6-x(PO4)xO2:Eu3+ (x = 0, 2) red phosphors. J. Lumin. 2020, 221, 1170743. [Google Scholar] [CrossRef]
- Jiménez, J.A. Eu3+ amidst ionic copper in glass: Enhancement through energy transfer from Cu+, or quenching by Cu2+? Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 979–985. [Google Scholar] [CrossRef]
- Cawthray, J.F.; Creagh, A.L.; Haynes, C.A.; Orvig, C. Ion exchange in hydroxyapatite with lanthanides. Inorg. Chem. 2015, 54, 1440–1445. [Google Scholar] [CrossRef]
- Yong, G.; Chunshan, S. The spectral properties of BaB8O13:Eu, Tb phosphors. J. Phys. Chem. Solids 1996, 57, 1303–1306. [Google Scholar] [CrossRef]
- Sutter, B.; Wasowicz, T.; Howard, T.; Hossner, L.R.; Ming, D.W. Characterization of Iron, Manganese, and Copper Synthetic Hydroxyapatites by Electron Paramagnetic Resonance Spectroscopy. Soil Sci. Soc. Am. J. 2002, 66, 1359–1366. [Google Scholar] [CrossRef]
- Bahranowski, K.; Dula, R.; Labanowska, M.; Serwicka, E.M. ESR study of Cu centers supported on Al-, Ti-, and Zr-pillared montmorillonite clays. Appl. Spectrosc. 1996, 50, 1439–1445. [Google Scholar] [CrossRef]
- Peisach, J.; Blumberg, W. Analysis of EPR Copper structural implications derived from the analysis of EPR spectra of natural and artificial Cu-proteins. Arch Biochem Biophys 1974, 165, 691–708. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, R.P.; Venugopalan, P.; Witwicki, M.; Ferretti, V. Synthesis, characterization, single crystal X-ray structure, EPR and theoretical studies of a new hybrid inorganic-organic compound [Cu(Hdien)2(H2O)2](pnb)4·4H2O and its structural comparison with related [Cu(en)2(H2O)2](pnb)2. J. Mol. Struct. 2016, 1123, 124–132. [Google Scholar] [CrossRef]
- Maślewski, P.; Wyrzykowski, D.; Witwicki, M.; Dołęga, A. Histaminol and Its Complexes with Copper(II) – Studies in Solid State and Solution. Eur. J. Inorg. Chem. 2018, 2018, 1399–1408. [Google Scholar] [CrossRef]
- Kumar, S.; Pal Sharma, R.; Venugopalan, P.; Gondil, V.S.; Chhibber, S.; Aree, T.; Witwicki, M.; Ferretti, V. Hybrid inorganic-organic complexes: Synthesis, spectroscopic characterization, single crystal X-ray structure determination and antimicrobial activities of three copper(II)-diethylenetriamine-p-nitrobenzoate complexes. Inorganica Chim. Acta 2018, 469, 288–297. [Google Scholar] [CrossRef]
Sample | a (Å) | c (Å) | V (Å3) | Size (nm) | Rw (%) |
---|---|---|---|---|---|
single crystal | 9.424(4) | 6.879(4) | 529.09(44) | – | – |
doped with x mol% Eu3+ | |||||
0.5 mol% Eu3+ | 9.4139(6) | 6.8905(0) | 528.83(54) | 55.6(2) | 3.0 |
1 mol% Eu3+ | 9.4259(6) | 6.8881(3) | 530.19(10) | 45.5(9) | 2.8 |
3 mol% Eu3+ | 9.4276(8) | 6.8891(5) | 530.26(80) | 38.0(1) | 3.3 |
co-doped with x mol% Eu3+ and y mol% Cu2+ | |||||
0.5 mol% Eu3+/1 mol% Cu2+ | 9.4300(2) | 6.8875(1) | 530.41(48) | 42.0(2) | 3.1 |
1 mol% Eu3+/1 mol% Cu2+ | 9.4264(5) | 6.8858(9) | 529.87(91) | 41.2(4) | 2.7 |
4 mol% Eu3+/0.5 mol% Cu2+ | 9.4288(2) | 6.8893(5) | 530.41(84) | 58.2(0) | 3.2 |
τEu (ms) | τEu → Cu (ms) | ηEu → Cu (%) | |
---|---|---|---|
0.5 mol% Eu3+ | 0.93 | 0.33 | 65 |
1 mol% Eu3+ | 0.82 | 0.22 | 73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyszka, K.; Targońska, S.; Lewińska, A.; Watras, A.; Wiglusz, R.J. Quenching of the Eu3+ Luminescence by Cu2+ Ions in the Nanosized Hydroxyapatite Designed for Future Bio-Detection. Nanomaterials 2021, 11, 464. https://doi.org/10.3390/nano11020464
Szyszka K, Targońska S, Lewińska A, Watras A, Wiglusz RJ. Quenching of the Eu3+ Luminescence by Cu2+ Ions in the Nanosized Hydroxyapatite Designed for Future Bio-Detection. Nanomaterials. 2021; 11(2):464. https://doi.org/10.3390/nano11020464
Chicago/Turabian StyleSzyszka, Katarzyna, Sara Targońska, Agnieszka Lewińska, Adam Watras, and Rafal J. Wiglusz. 2021. "Quenching of the Eu3+ Luminescence by Cu2+ Ions in the Nanosized Hydroxyapatite Designed for Future Bio-Detection" Nanomaterials 11, no. 2: 464. https://doi.org/10.3390/nano11020464
APA StyleSzyszka, K., Targońska, S., Lewińska, A., Watras, A., & Wiglusz, R. J. (2021). Quenching of the Eu3+ Luminescence by Cu2+ Ions in the Nanosized Hydroxyapatite Designed for Future Bio-Detection. Nanomaterials, 11(2), 464. https://doi.org/10.3390/nano11020464