Photocatalytic Activity of Magnetic Nano-β-FeOOH/Fe3O4/Biochar Composites for the Enhanced Degradation of Methyl Orange Under Visible Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Catalysts
2.2.1. Preparation of Biochar
2.2.2. Preparation of β-FeOOH/Fe3O4/Biochar
2.3. Characterization of Catalysts
2.4. Degradation of MO
3. Results and Discussion
3.1. Structural Analysis of Biochar and Composite Catalyst
3.2. Adsorption Experiment
3.2.1. Kinetic Experiment
3.2.2. Thermodynamic Experiment
3.3. Photocatalytic Degradation Performance
3.3.1. Adsorption Performance
3.3.2. Performance of Photocatalytic
3.4. Research on Photocatalytic Mechanism of Catalyst
3.5. Reused Performance of β-FeOOH/Fe3O4/Biochar
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Hanafy, H.; Zhang, L.; Sellaoui, L.; Netto, M.S.; Oliveira, M.L.; Seliem, M.K.; Dotto, G.L.; Bonilla-Petriciolet, A.; Li, Q. Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chem. Eng. J. 2020, 388, 124263. [Google Scholar] [CrossRef]
- Bai, Y.-N.; Wang, X.-N.; Zhang, F.; Wu, J.; Zhang, W.; Lu, Y.-Z.; Fu, L.; Lau, T.-C.; Zeng, R.J. High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor. J. Hazard. Mater. 2020, 388, 121753. [Google Scholar] [CrossRef] [PubMed]
- Govindan, K.; Suresh, A.; Sakthivel, T.; Murugesan, K.; Mohan, R.; Gunasekaran, V.; Jang, A. Effect of peroxomonosulfate, peroxodisulfate and hydrogen peroxide on graphene oxide photocatalytic performances in methyl orange dye degradation. Chemosphere 2019, 237, 124479. [Google Scholar] [CrossRef]
- Li, Z.; Sellaoui, L.; Franco, D.; Netto, M.S.; Georgin, J.; Dotto, G.L.; Bajahzar, A.; Belmabrouk, H.; Bonilla-Petriciolet, A.; Li, Q. Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems: Experimental study and physicochemical interpretation of the adsorption mechanism. Chem. Eng. J. 2020, 389, 124467. [Google Scholar] [CrossRef]
- Mohanraj, J.; Durgalakshmi, D.; Balakumar, S.; Aruna, P.; Ganesan, S.; Rajendran, S.; Naushad, M. Low cost and quick time absorption of organic dye pollutants under ambient condition using partially exfoliated graphite. J. Water Process. Eng. 2020, 34, 101078. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Zhu, X.; Chao, M.; Xue, J.; Sun, D.; Xia, F.; Xue, Q. Dual-functional membrane decorated with flower-like metal-organic frameworks for highly efficient removal of insoluble emulsified oils and soluble dyes. J. Hazard. Mater. 2020, 124444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, M.; Wang, X.; Wang, C.; Lu, D.; Ma, W.; Kube, S.A.; Ma, J.; Elimelech, M. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Alves, C.C.; Franca, A.S.; Oliveira, L.S. Removal of phenylalanine from aqueous solutions with thermo-chemically modified corn cobs as adsorbents. LWT 2013, 51, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dalle, A.A.; Domergue, L.; Fourcade, F.; Assadi, A.A.; Djelal, H.; Lendormi, T.; Soutrel, I.; Taha, S.; Amrane, A. Efficiency of DMSO as hydroxyl radical probe in an Electrochemical Advanced Oxidation Process—Reactive oxygen species monitoring and impact of the current density. Electrochim. Acta 2017, 246, 1–8. [Google Scholar] [CrossRef]
- Ding, D.; Zhou, L.; Kang, F.; Yang, S.; Chen, R.; Cai, T.; Duan, X.; Wang, S. Synergistic Adsorption and Oxidation of Ciprofloxacin by Biochar Derived from Metal-Enriched Phytoremediation Plants: Experimental and Computational Insights. ACS Appl. Mater. Interfaces 2020, 12, 53788–53798. [Google Scholar] [CrossRef]
- Bagheri, N.; Abedi, J. Adsorption of methane on corn cobs based activated carbon. Chem. Eng. Res. Des. 2011, 89, 2038–2043. [Google Scholar] [CrossRef]
- Das, T.R.; Sharma, P.K. Bimetal oxide decorated graphene oxide (Gd2O3/Bi2O3@GO) nanocomposite as an excellent adsorbent in the removal of methyl orange dye. Mater. Sci. Semicond. Process. 2020, 105, 104721. [Google Scholar] [CrossRef]
- Milenković, D.; Bojić, A.; Veljković, V. Ultrasound-assisted adsorption of 4-dodecylbenzene sulfonate from aqueous solutions by corn cob activated carbon. Ultrason. Sonochemistry 2013, 20, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Tian, W.; Qiao, K.; Zhao, J.; Chu, M.; Du, Z.; Wang, L.; Xie, W. Adsorption Behaviors of Polycyclic Aromatic Hydrocarbons and Oxygen Derivatives in Wastewater on N-Doped Reduced Graphene Oxide. Sep. Purif. Technol. 2021, 254, 117565. [Google Scholar] [CrossRef]
- Sanford, J.; Larson, R.; Runge, T. Nitrate sorption to biochar following chemical oxidation. Sci. Total. Environ. 2019, 669, 938–947. [Google Scholar] [CrossRef]
- Shan, R.; Lu, L.; Gu, J.; Zhang, Y.; Yuan, H.; Chen, Y.; Luo, B. Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater. Sci. Semicond. Process. 2020, 114, 105088. [Google Scholar] [CrossRef]
- Fang, G.; Liu, C.; Wang, Y.; Dionysiou, D.D.; Zhou, D. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation. Appl. Catal. B Environ. 2017, 214, 34–45. [Google Scholar] [CrossRef]
- Neon, M.H.K.; Islam, S. MoO3 and Ag co-synthesized TiO2 as a novel heterogeneous photocatalyst with enhanced visible-light-driven photocatalytic activity for methyl orange dye degradation. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100244. [Google Scholar] [CrossRef]
- Dudita, M.; Bogatu, C.; Enesca, A.; Duta, A. The influence of the additives composition and concentration on the properties of SnOx thin films used in photocatalysis. Mater. Lett. 2011, 65, 2185–2189. [Google Scholar] [CrossRef]
- Enesca, A.; Isac, L.; Duta, A. Charge carriers injection in tandem semiconductors for dyes mineralization. Appl. Catal. B Environ. 2015, 162, 352–363. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Li, W.; Zhang, L.; Chen, T.; Ding, L. Degradation of methyl orange through hydroxyl radical generated by optically excited biochar: Performance and mechanism. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 601, 125034. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, Y.; Jiang, S.; Wang, Y.; Li, H.; Han, W.; Qu, J.; Wang, L.; Hu, Y. Graphene-like carbon sheet-supported nZVI for efficient atrazine oxidation degradation by persulfate activation. Chem. Eng. J. 2021, 403, 126309. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, H.; Miao, J.; Zhang, C.; Zhang, J.; Zhang, Y.; Guo, Y. A waste corn cob core-derived SiO2 @ graphene-like carbon nanocomposite and its application in lithium-ion battery. J. Mater. Sci. Mater. Electron. 2020. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, S.; Liu, Y.; Tan, X.; Liu, N.; Wen, J. Efficient Removal 17-Estradiol by Graphene-Like Magnetic Sawdust Biochar: Preparation Condition and Adsorption Mechanism. Int. J. Environ. Res. Public Health 2020, 17, 8377. [Google Scholar] [CrossRef]
- Wuab, P.; Zhoub, C.; Lib, Y.; Zhangc, M.; Taoc, P.; Liua, Q.; Cuic, W. Flower-like FeOOH hybridized with carbon quantum dots for efficient photo-Fenton degradation of organic pollutants. Appl. Surf. Sci. 2021, 540, 148362. [Google Scholar] [CrossRef]
- He, S.-A.; Li, W.; Wang, X.; Ma, Q.; Li, M.; Xu, W.; Wang, X.-C.; Zhao, C.-H. High-efficient precious-metal-free g-C3N4-Fe3O4/β-FeOOH photocatalyst based on double-heterojunction for visible-light-driven hydrogen evolution. Appl. Surf. Sci. 2020, 506. [Google Scholar] [CrossRef]
- Li, C.; Wu, J.; Peng, W.; Fang, Z.; Liu, J. Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites: Coexistence of radical and non-radical reactions. Chem. Eng. J. 2019, 356, 904–914. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, K.; Han, X.; Zhao, Q.; Wang, D.; Fu, F.; Liang, Y. Highly efficient visible-light-driven photo-Fenton catalytic performance over FeOOH/Bi2WO6 composite for organic pollutant degradation. J. Alloy. Compd. 2020, 816, 152560. [Google Scholar] [CrossRef]
- Talukdara, K.; Junb, B.-M.; Yoonb, Y.; Kima, Y.; Fayyaza, A.; Park, C.M. Novel Z-scheme Ag3PO4/Fe3O4-activated biochar photocatalyst with enhanced visible-light catalytic performance toward degradation of bisphenol A. J. Hazard. Mater. 2020, 398, 123025. [Google Scholar] [CrossRef] [PubMed]
- El-Azazy, M.; El-Shafie, A.S.; Al-Meer, S.; Al-Saad, K.A. Eco-structured Adsorptive Removal of Tigecycline from Wastewater: Date Pits’ Biochar versus the Magnetic Biochar. Nanomater. 2020, 11, 30. [Google Scholar] [CrossRef]
- Shu, Y.; Ji, B.; Cui, B.; Shi, Y.; Wang, J.; Hu, M.; Luo, S.; Guo, D. Almond Shell-Derived, Biochar-Supported, Nano-Zero-Valent Iron Composite for Aqueous Hexavalent Chromium Removal: Performance and Mechanisms. Nanomaterials. 2020, 10, 198. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; An, Q.; Xiao, Z.; Zhai, S.; Shi, Z. Significant promotion of porous architecture and magnetic Fe3O4 NPs inside honeycomb-like carbonaceous composites for enhanced microwave absorption. RSC Adv. 2018, 8, 19011–19023. [Google Scholar] [CrossRef] [Green Version]
- Gallo-Cordova, A.; Lemus, J.; Palomares, F.; Morales, M.; Mazarío, E. Superparamagnetic nanosorbent for water purification: Assessment of the adsorptive removal of lead and methyl orange from aqueous solutions. Sci. Total. Environ. 2020, 711, 134644. [Google Scholar] [CrossRef] [PubMed]
- Alagha, O.; Manzar, M.S.; Zubair, M.; Anil, I.; Mu’Azu, N.D.; Qureshi, A. Comparative Adsorptive Removal of Phosphate and Nitrate from Wastewater Using Biochar-MgAl LDH Nanocomposites: Coexisting Anions Effect and Mechanistic Studies. Nanomaterials 2020, 10, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammad, A.-T.; AbdulHameed, A.S.; Jawad, A.H. Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO2 nanocomposite: Methyl orange adsorption and mechanism studies. Int. J. Biol. Macromol. 2019, 129, 98–109. [Google Scholar] [CrossRef]
- Pargoletti, E.; Pifferi, V.; Falciola, L.; Facchinetti, G.; Depaolini, A.R.; Davoli, E.; Marelli, M.; Cappelletti, G. A detailed investigation of MnO2 nanorods to be grown onto activated carbon. High efficiency towards aqueous methyl orange adsorption/degradation. Appl. Surf. Sci. 2019, 472, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Osgouei, M.S.; Khatamian, M.; Kakili, H. Improved visible-light photocatalytic activity of Mn3O4-based nanocomposites in removal of methyl orange. Mater. Chem. Phys. 2020, 239, 122108. [Google Scholar] [CrossRef]
- Xiao, Y.; Lyu, H.; Tang, J.; Wang, K.; Sun, H. Effects of ball milling on the photochemistry of biochar: Enrofloxacin degradation and possible mechanisms. Chem. Eng. J. 2020, 384, 123311. [Google Scholar] [CrossRef]
- Lahmar, H.; Benamira, M.; Douafer, S.; Messaadia, L.; Boudjerda, A.; Trari, M. Photocatalytic degradation of methyl orange on the novel hetero-system La2NiO4/ZnO under solar light. Chem. Phys. Lett. 2020, 742, 137132. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Li, R.; Guo, J.; Li, Y.; Zhu, J.; Xie, X. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. Chemosphere 2017, 185, 351–360. [Google Scholar] [CrossRef]
- Heo, J.N.; Do, J.Y.; Son, N.; Kim, J.; Kim, Y.S.; Hwang, H.; Kang, M. Rapid removal of methyl orange by a UV Fenton-like reaction using magnetically recyclable Fe-oxalate complex prepared with rice husk. J. Ind. Eng. Chem. 2019, 70, 372–379. [Google Scholar] [CrossRef]
- Wang, F.; Dang, Y.-Q.; Tian, X.; Harrington, S.; Ma, Y.-Q. Fabrication of magnetic activated carbons from corn cobs using the pickle liquor from the surface treatment of iron and steel. New Carbon Mater. 2018, 33, 303–309. [Google Scholar] [CrossRef]
Sample | Pseudo-Second-Order Kinetic Model | |||
---|---|---|---|---|
Qe (exp) (mg·g−1) | k2 (g·mg−1·min−1) | Qe (cal) (mg·g−1) | R2 | |
Biochar | 86.15 | 0.2316 ± 0.0421 | 88.28 | 0.99 |
β-FeOOH/Fe3O4/biochar | 57.93 | 0.1645 ± 0.0352 | 58.11 | 0.99 |
Sample | Freundlich Isotherm Model | ||
---|---|---|---|
KF (mg·g−1) (L·mg−1)1/n | n | R2 | |
Biochar | 9.9132 ± 0.0751 | 0.26 | 0.99 |
β-FeOOH/Fe3O4/biochar | 6.4634 ± 0.0482 | 0.25 | 0.99 |
Sample | k | R2 |
---|---|---|
Biochar | 0.2012 ± 0.0457 | 0.82 |
β-FeOOH/Fe3O4/biochar | 0.4087 ± 0.0586 | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, G.; Li, W.; Zhang, L.; Guo, B.; Ding, L.; Li, X. Photocatalytic Activity of Magnetic Nano-β-FeOOH/Fe3O4/Biochar Composites for the Enhanced Degradation of Methyl Orange Under Visible Light. Nanomaterials 2021, 11, 526. https://doi.org/10.3390/nano11020526
Zhang Z, Wang G, Li W, Zhang L, Guo B, Ding L, Li X. Photocatalytic Activity of Magnetic Nano-β-FeOOH/Fe3O4/Biochar Composites for the Enhanced Degradation of Methyl Orange Under Visible Light. Nanomaterials. 2021; 11(2):526. https://doi.org/10.3390/nano11020526
Chicago/Turabian StyleZhang, Zheng, Guanghua Wang, Wenbing Li, Lidong Zhang, Benwei Guo, Ling Ding, and Xiangcheng Li. 2021. "Photocatalytic Activity of Magnetic Nano-β-FeOOH/Fe3O4/Biochar Composites for the Enhanced Degradation of Methyl Orange Under Visible Light" Nanomaterials 11, no. 2: 526. https://doi.org/10.3390/nano11020526
APA StyleZhang, Z., Wang, G., Li, W., Zhang, L., Guo, B., Ding, L., & Li, X. (2021). Photocatalytic Activity of Magnetic Nano-β-FeOOH/Fe3O4/Biochar Composites for the Enhanced Degradation of Methyl Orange Under Visible Light. Nanomaterials, 11(2), 526. https://doi.org/10.3390/nano11020526