Nanocrystalline TiO2/Carbon/Sulfur Composite Cathodes for Lithium–Sulfur Battery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
2.2. Methods
3. Results and Discussion
3.1. Materials Characterization
3.2. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, S.S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013, 231, 153–162. [Google Scholar] [CrossRef]
- Dong, C.; Gao, W.; Jin, B.; Jiang, Q. Advances in Cathode Materials for High-Performance Lithium-Sulfur Batteries. iScience 2018, 6, 151–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Xia, P.; Lei, W.; Pan, Y.; Zou, Y.; Ma, Z. Preparation of activated carbon derived from biomass and its application in lithium–sulfur batteries. J. Porous Mater. 2019, 26, 1325–1333. [Google Scholar] [CrossRef]
- Benítez, A.; Morales, J.; Caballero, Á. Pistachio Shell-Derived Carbon Activated with Phosphoric Acid: A More Efficient Procedure to Improve the Performance of Li–S Batteries. Nanomaterials 2020, 10, 840. [Google Scholar] [CrossRef] [PubMed]
- Ando, T.; Sato, Y.; Matsuyama, T.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. High-rate operation of sulfur/mesoporous activated carbon composite electrode for all-solid-state lithium-sulfur batteries. J. Ceram. Soc. Jpn. 2020, 128, 233–237. [Google Scholar] [CrossRef]
- Li, S.; Lin, Z.; He, G.; Huang, J. Cellulose substance derived nanofibrous activated carbon as a sulfur host for lithium-sulfur batteries. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125129. [Google Scholar] [CrossRef]
- Eftekhari, A.; Kim, D.-W. Cathode materials for lithium–sulfur batteries: A practical perspective. J. Mater. Chem. A 2017, 5, 17734–17776. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Cheng, M.; Zhao, H.; Wang, J.; Zhao, Z.; Duan, X.; Wang, C.; Wang, J. Hierarchical porous carbon-graphene-based Lithium–Sulfur batteries. Electrochim. Acta 2019, 318, 161–168. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, K.; Ji, G.; Guo, X.; Han, M.; Wen, J.; Ren, Z.; Zhao, S.; Gao, Z.; Wang, R.; et al. High sulfur loading, rGO-linked and polymer binder-free cathodes based on rGO wrapped N,P-codoped mesoporous carbon as sulfur host for Li–S batteries. Chem. Eng. J. 2019, 361, 1043–1052. [Google Scholar] [CrossRef]
- Kim, J.; Kang, Y.; Song, S.-W.; Suk, J. Freestanding sulfur-graphene oxide/carbon composite paper as a stable cathode for high performance lithium-sulfur batteries. Electrochim. Acta 2019, 299, 27–33. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, X.; Wang, J.; Li, X.; Chen, W.; Wei, C.; Hu, H.; Liang, G. Hydroxylated sandwich-structure interlayer as a polysulfide reservoir for lithium-sulfur battery. J. Alloys Compd. 2019, 776, 187–193. [Google Scholar] [CrossRef]
- Yim, T.; Han, S.H.; Park, N.H.; Park, M.-S.; Lee, J.H.; Shin, J.; Choi, J.W.; Jung, Y.; Jo, Y.N.; Yu, J.-S.; et al. Effective Polysulfide Rejection by Dipole-Aligned BaTiO3 Coated Separator in Lithium-Sulfur Batteries. Adv. Funct. Mater. 2016, 26, 7817–7823. [Google Scholar] [CrossRef]
- Kim, J.; Byun, D.; Kim, H.-S.; Choi, W.; Kim, S.-O. Surface-modified PVdF-derived hierarchical mesoporous carbon matrix for high sulfur loading cathode in lithium–sulfur batteries. J. Power Sources 2019, 427, 165–173. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.; Zhang, W.; Shao, C.; Lan, D.; Qu, X.; Chen, R.; Zhang, W.; Zhao, W.; Liu, J.; et al. Three-dimensional graphene-wrapped porous carbon/sulfur composite for cathode of lithium–sulfur battery. SN Appl. Sci. 2020, 2, 1–10. [Google Scholar] [CrossRef]
- Wang, M.; Tan, S.; Kan, S.; Wu, Y.; Sang, S.; Liu, K.; Liu, H. In-situ assembly of TiO2 with high exposure of (001) facets on three-dimensional porous graphene aerogel for lithium-sulfur battery. J. Energy Chem. 2020, 49, 316–322. [Google Scholar] [CrossRef]
- Wu, J.; Li, S.; Yang, P.; Zhang, H.; Du, C.; Xu, J.; Song, K. S@TiO2 nanospheres loaded on PPy matrix for enhanced lithium-sulfur batteries. J. Alloys Compd. 2019, 783, 279–285. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, W.; Chen, G.Z.; Cairns, E.J. Polypyrrole/TiO2 nanotube arrays with coaxial heterogeneous structure as sulfur hosts for lithium sulfur batteries. J. Power Sources 2016, 327, 447–456. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Y.; Qi, Z.; Zhong, X.; Yu, Y. Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Mater. 2018, 12, 37–43. [Google Scholar] [CrossRef]
- Yan, R.; Oschatz, M.; Wu, F. Towards stable lithium-sulfur battery cathodes by combining physical and chemical confinement of polysulfides in core-shell structured nitrogen-doped carbons. Carbon 2020, 161, 162–168. [Google Scholar] [CrossRef]
- Li, Y.; Guo, X.-T.; Zhang, S.-T.; Pang, H. Promoting performance of lithium–sulfur battery via in situ sulfur reduced graphite oxide coating. Rare Met. 2021, 40, 417–424. [Google Scholar] [CrossRef]
- Gaoa, L.; Caoa, Y.; Wanga, J.; Renb, H.; Wangc, J.; Huangac, J. Construction of polypyrrole coated hollow cobalt manganate nanocages as an effective sulfur host for lithium-sulfur batteries. Ceram. Int. 2020, 46, 18224–18233. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Bousa, M.; Laskova, B.; Zukalova, M.; Prochazka, J.; Chou, A.; Kavan, L. Polycrystalline TiO2 Anatase with a Large Proportion of Crystal Facets (001): Lithium Insertion Electrochemistry. J. Electrochem. Soc. 2010, 157, A1108. [Google Scholar] [CrossRef]
- Kavan, L.; Kalbác, M.; Zukalova, M.; Exnar, I.; Lorenzen, V.; Nesper, R.; Graetzel, M. Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth. Chem. Mater. 2004, 16, 477–485. [Google Scholar] [CrossRef]
- Hlavaty, J.; Kavan, L.; Rathousky, J.; Zukal, A. Adsorption of Nitrogen on Electrochemical Carbon. Langmuir 1995, 11, 4596–4597. [Google Scholar] [CrossRef]
- Zukalova, M.; Kavan, L. Nanocrystalline TiO2 and Li4Ti5O12 as Novel Inorganic Host Materials for Li–S Batteries. ECS Trans. 2020, 99, 151–159. [Google Scholar] [CrossRef]
- Haul, R.S.J.; Gregg, K.S.W. Sing: Adsorption, Surface Area and Porosity. 2. Auflage, Academic Press, London 1982. 303 Seiten, Preis: $ 49.50. Ber. Bunsenges. Phys. Chem. 1982, 86, 957. [Google Scholar] [CrossRef]
- De Boer, J.; Lippens, B.; Linsen, B.; Broekhoff, J.; Heuvel, A.V.D.; Osinga, T.J. Thet-curve of multimolecular N2-adsorption. J. Colloid Interface Sci. 1966, 21, 405–414. [Google Scholar] [CrossRef]
- Wu, H.-L.; Huff, L.A.; Gewirth, A.A. In Situ Raman Spectroscopy of Sulfur Speciation in Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2015, 7, 1709–1719. [Google Scholar] [CrossRef]
- Vinayan, B.P.; Euchner, H.; Zhao-Karger, Z.; Cambaz, M.A.; Li, Z.; Diemant, T.; Behm, R.J.; Gross, A.; Fichtner, M. Insights into the electrochemical processes of rechargeable magnesium–sulfur batteries with a new cathode design. J. Mater. Chem. A 2019, 7, 25490–25502. [Google Scholar] [CrossRef]
- Zeng, Q.R.; Wang, D.-W.; Wu, K.-H.; Li, Y.; De Godoi, F.C.; Gentle, I.R. Synergy of nanoconfinement and surface oxygen in recrystallization of sulfur melt in carbon nanocapsules and the related Li–S cathode properties. J. Mater. Chem. A 2014, 2, 6439. [Google Scholar] [CrossRef]
- Geng, X.; Yi, R.; Lin, X.; Liu, C.; Sun, Y.; Zhao, Y.; Li, Y.; Mitrovic, I.; Liu, R.; Yang, L.; et al. A high conductive TiC–TiO2/SWCNT/S composite with effective polysulfides adsorption for high performance Li–S batteries. J. Alloys Compd. 2021, 851, 156793. [Google Scholar] [CrossRef]
- Ahn, H.; Kim, Y.; Bae, J.; Kim, Y.K.; Kim, W.B. A multifunctional SnO2-nanowires/carbon composite interlayer for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 401, 126042. [Google Scholar] [CrossRef]
Additive | SBET, m2 g−1 | Smic (t-plot) m2 g−1 | Sext (t-plot) m2 g−1 | Vmic (t-plot) cm3 g−1 |
---|---|---|---|---|
MP | 521.5 | 372.4 | 149.1 | 0.21 |
AC | 792.0 | 559.2 | 232.8 | 0.32 |
EC | 1606.6 | 372.2 | 1234.4 | 0.22 |
MP + TiO2 | 340.3 | 226.8 | 113.5 | 0.13 |
AC + TiO2 | 574.2 | 429.7 | 144.5 | 0.25 |
EC + TiO2 | 659.6 | 381.6 | 278.0 | 0.22 |
Additive | C, mAh g−1 | C, mAh g−1, SG | C, mAh g−1, SG + TiO2 | C, mAh g−1, SG + SnO2 |
---|---|---|---|---|
MP | 72 | - | - | - |
AC | 319 | 361 | 280 | 270 |
EC | 649 | 765 | 521 | 278 |
MP + TiO2 | 95 | - | - | - |
AC + TiO2 | 393 | 660 | 305 | 271 |
EC + TiO2 | 417 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zukalová, M.; Vinarčíková, M.; Bouša, M.; Kavan, L. Nanocrystalline TiO2/Carbon/Sulfur Composite Cathodes for Lithium–Sulfur Battery. Nanomaterials 2021, 11, 541. https://doi.org/10.3390/nano11020541
Zukalová M, Vinarčíková M, Bouša M, Kavan L. Nanocrystalline TiO2/Carbon/Sulfur Composite Cathodes for Lithium–Sulfur Battery. Nanomaterials. 2021; 11(2):541. https://doi.org/10.3390/nano11020541
Chicago/Turabian StyleZukalová, Markéta, Monika Vinarčíková, Milan Bouša, and Ladislav Kavan. 2021. "Nanocrystalline TiO2/Carbon/Sulfur Composite Cathodes for Lithium–Sulfur Battery" Nanomaterials 11, no. 2: 541. https://doi.org/10.3390/nano11020541
APA StyleZukalová, M., Vinarčíková, M., Bouša, M., & Kavan, L. (2021). Nanocrystalline TiO2/Carbon/Sulfur Composite Cathodes for Lithium–Sulfur Battery. Nanomaterials, 11(2), 541. https://doi.org/10.3390/nano11020541