Loading Effect of Sol-Gel Derived Barium Hexaferrite on Magnetic Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of BaM Powders
2.2. Synthesis and Characterization of BaM-ABS Composites
3. Results and Discussion
3.1. Characterization of BaM Powders
3.2. Magnetic Properties of BaM-ABS Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Muthsam, O.; Schuschnigg, S.; Sirak, K.; Thanhoffer, R.; Teliban, I.; Vogler, C.; et al. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer. Appl. Phys. Lett. 2016, 109, 162401. [Google Scholar] [CrossRef]
- Von Petersdorff-Campen, K.; Hauswirth, Y.; Carpenter, J.; Hagmann, A.; Boës, S.; Daners, M.S.; Penner, D.; Meboldt, M. 3D printing of functional assemblies with integrated polymer-bonded magnets demonstrated with a prototype of a rotary blood pump. Appl. Sci. 2018, 8, 1275. [Google Scholar] [CrossRef] [Green Version]
- Palmero, E.M.; Casaleiz, D.; Jiménez, N.A.; Rial, J.; de Vicente, J.; Nieto, A.; Altimira, R.; Bollero, A. Magnetic-polymer composites for bonding and 3D printing of permanent magnets. IEEE Trans. Magn. 2019, 55, 2101004. [Google Scholar] [CrossRef]
- Paranthaman, M.P.; Yildirim, V.; Lamichhane, T.N.; Begley, B.A.; Post, B.K.; Hassen, A.A.; Sales, B.C.; Gandha, K.; Nlebedim, I.C. Additive manufacturing of isotropic NdFeB PPS bonded permanent magnets. Materials 2020, 13, 3319. [Google Scholar] [CrossRef]
- Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Schuschnigg, S.; Teliban, I.; Vogler, C.; Wautischer, G.; Windl, R.; Suess, D. Rare-earth magnets with a variable magnetic compound fraction for a predefined stray field. Sci. Rep. 2017, 7, 9419. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Jones, K.; Sales, B.; Pries, J.L.; Nlebedim, I.C.; Jin, K.; Bei, H.; Post, B.K.; Kesler, M.S.; Rios, O.; et al. Fabrication of highly dense isotropic Nd-Fe-B nylon bonded magnets via extrusion-based additive manufacturing. Addit. Manuf. 2018, 21, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Khazdozian, H.A.; Manzano, J.S.; Gandha, K.; Slowing, I.I.; Nlebedim, I.C. Recycled Sm-Co bonded magnet filaments for 3D printing of magnets. AIP Adv. 2018, 8, 056722. [Google Scholar] [CrossRef] [Green Version]
- Palmero, E.M.; Rial, J.; de Vicente, J.; Camarero, J.; Skårman, B.; Vidarsson, H.; Larsson, P.-O.; Bollero, A. Development of permanent magnet MnAlC/polymer composites and flexible filament for bonding and 3D-printing technologies. Sci. Technol. Adv. Mater. 2018, 19, 465–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanemann, T.; Syperek, D.; Nötzel, D. 3D printing of ABS barium ferrite composites. Materials 2020, 13, 1481. [Google Scholar] [CrossRef] [Green Version]
- Pullar, R.C. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 2012, 57, 1191–1334. [Google Scholar] [CrossRef]
- Slimani, Y.; Almessiere, M.A.; Güner, S.; Kurtan, U.; Baykal, A. Impacts of sol-gel auto-combustion and ultrasonication approaches on structural, magnetic, and optical properties of Sm-Tm Co-substituted Sr0.5Ba0.5Fe12O19 nanohexaferrites: Comparative study. Nanomaterials 2020, 10, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanagesan, S.; Jesurani, S.; Velmurugan, R.; Kumar, C. Synthesis of barium hexaferrite (BaFe12O19) using D-fructose as a fuel. J. Manuf. Eng. 2010, 5, 133–136. [Google Scholar]
- Bahadur, D.; Rajakumar, S.; Kumar, A. Influence of fuel ratios on auto combustion synthesis of barium ferrite nano particles. J. Chem. Sci. 2006, 118, 15–21. [Google Scholar] [CrossRef]
- Chen, M.; Fan, R.; Liu, G.; Wang, X.; Sun, K. Magnetic properties of barium ferrite prepared by hydrothermal synthesis. Key Eng. Mater. 2015, 655, 178–181. [Google Scholar] [CrossRef]
- Martirosyan, K.S.; Galstyan, E.; Hossain, S.M.; Wang, Y.-J.; Litvinov, D. Barium hexaferrite nanoparticles: Synthesis and magnetic properties. Mater. Sci. Eng. 2011, 176, 8–13. [Google Scholar] [CrossRef]
- Xu, P.; Han, X.; Wang, M. Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique. J. Phys. Chem. 2007, 111, 5866–5870. [Google Scholar] [CrossRef]
- Radwan, M.; Rashad, M.M.; Hessien, M.M. Synthesis and characterization of barium hexaferrite nanoparticles. J. Mater. Process. Technol. 2007, 181, 106–109. [Google Scholar] [CrossRef]
- Ebrahimi, Z.; Hedayati, K.; Ghanbari, D. Preparation of hard magnetic BaFe12O19-TiO2 nanocomposites: Applicable for photo-degradation of toxic pollutants. J. Mater. Sci. Mater. Electron. 2017, 28, 13956–13969. [Google Scholar] [CrossRef]
- Mohsen, Q. Factors affecting the synthesis and formation of single-phase barium hexaferrite by a technique of oxalate precursor. Am. J. Appl. Sci. 2010, 7, 914–921. [Google Scholar] [CrossRef] [Green Version]
- Asiri, S.; Güner, S.; Demir, A.; Yildiz, A.; Manikandan, A.; Baykal, A. Synthesis and magnetic characterization of Cu substituted barium hexaferrites. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1065–1071. [Google Scholar] [CrossRef]
- Xu, G.; Ma, H.; Zhong, M.; Zhou, J.; Yue, Y.; He, Z. Influence of pH on characteristics of BaFe12O19 powder prepared by sol-gel auto-combustion. J. Magn. Magn. Mater. 2006, 301, 383–388. [Google Scholar] [CrossRef]
- Mandizadeh, S.; Soofivand, F.; Salavati-Niasari, M. Sol-gel auto combustion synthesis of BaFe12O19 nanoceramics by using carbohydrate sugars as a novel reducing agent. Adv. Powder Technol. 2015, 26, 1348–1354. [Google Scholar] [CrossRef]
- Widyastuti, W.; Felly, Y.F.F.; Rochman, R.; Purwaningsih, H. Effect of Fe3+/Ba2+ mole ratio and sintering temperatures on the microstructure and magnetic properties of nanoparticle barium hexaferrite (BaM) produced by sol-gel auto combustion. J. Tek. Ind. 2011, 12, 156–161. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q. Effect of Fe3+/Ba2+ mole ratio on the phase formation and microwave properties of BaFe12O19 prepared by citrate-EDTA complexing method. J. Alloys Compd. 2009, 469, 251–257. [Google Scholar] [CrossRef]
- Mali, A.; Ataie, A. Structural characterization of nano-crystalline BaFe12O19 powers synthesized by sol-gel combustion route. Scr. Mater. 2005, 53, 1065–1070. [Google Scholar] [CrossRef]
- Shao, L.-H.; Shen, S.-Y.; Zheng, H.; Zheng, P.; Wu, Q.; Zheng, L. Effect of powder grain size on microstructure and magnetic properties of hexagonal barium ferrite ceramic. J. Electron. Mater. 2018, 47, 4085–4089. [Google Scholar] [CrossRef]
- Asghar, G.; Asri, S.; Khusro, S.N.; Tariq, G.H.; Awan, M.S.; Irshad, M.; Safeen, A.; Iqbal, Y.; Shah, W.H.; Anis-Ur-Rehman, M. Enhanced magnetic properties of barium hexaferrite. J. Electron. Mater. 2020, 49, 4318–4323. [Google Scholar] [CrossRef]
- Shalini, M.G.; Subha, A.; Sahu, B.; Sahoo, S.C. Phase evolution and temperature dependent magnetic properties of nanocrystalline barium hexaferrite. J. Mater. Sci. Mater. Electron. 2019, 30, 13647–13654. [Google Scholar] [CrossRef]
- Popov, V.; Koptyug, A.; Radulov, I.; Maccari, F.; Muller, G. Prospects of additive manufacturing of rare-earth and non-rare-earth permanent magnets. Procedia Manuf. 2018, 21, 100–108. [Google Scholar] [CrossRef]
- Périgo, E.A.; Jacimovic, J.; Ferré, F.G.; Scherf, L.M. Additive manufacturing of magnetic materials. Addit. Manuf. 2019, 30, 100870. [Google Scholar] [CrossRef]
- Brito-Pereira, R.; Ribeiro, C.; Peřinka, N.; Lanceros-Mendez, S.; Martins, P. Reconfigurable 3D-printable magnets with improved maximum energy product. J. Mater. Chem. 2020, 8, 952–958. [Google Scholar] [CrossRef]
- Cicala, G.; Ognibene, G.; Portuesi, S.; Blanco, I.; Rapisarda, M.; Pergolizzi, E.; Recca, G. Comparison of Ultem 9085 used in fused deposition modelling (FDM) with polytherimide blends. Materials 2018, 11, 285. [Google Scholar] [CrossRef] [Green Version]
- Jaćimović, J.; Binda, F.; Herrmann, L.G.; Greuter, F.; Genta, J.; Calvo, M.; Tomše, T.; Simon, R.A. Net shape 3D printed NdFeB permanent magnet. Adv. Eng. Mater. 2017, 19, 1700098. [Google Scholar] [CrossRef]
- Jacimmovic, J.; Christen, T.; Dénervaud, E. Self-organized giant magnetic structure via additive manufacturing in NdFeB permanent magnets. Addit. Manuf. 2020, 34, 101288. [Google Scholar] [CrossRef]
- Urban, N.; Meyer, A.; Keller, V.; Franke, J. Contribution of additive manufacturing of rare earth material to the increase in performance and resource efficiency of permanent magnets. Appl. Mech. Mater. 2018, 882, 135–141. [Google Scholar] [CrossRef]
- Radulov, I.A.; Popov, V.V., Jr.; Koptyug, A.; Maccari, F.; Kovalevsky, A.; Essel, S.; Gassmann, J.; Skokov, K.P.; Bamberger, M. Production of net-shape Mn-Al permanent magnets by electron beam melting. Addit. Manuf. 2019, 30, 100787. [Google Scholar] [CrossRef]
- Paranthaman, M.P.; Shafer, C.S.; Elliott, A.M.; Siddel, D.H.; Mcguire, M.A.; Springfield, R.M.; Martin, J.; Fredette, R.; Ormerod, J. Binder jetting: A novel NdFeB bonded magnet fabrication process. Jom 2016, 68, 1978–1982. [Google Scholar] [CrossRef]
- Urban, N.; Kühl, A.; Glauche, M.; Franke, J. Additive manufacturing of neodymium-iron-boron permanent magnets. In Proceedings of the 2018 8th International Electric Drives Production Conference (EDPC), Schweinfurt, Germany, 4–5 December 2018; pp. 1–5. [Google Scholar]
- Blanco, I. The use of composite materials in 3D printing. J. Compos. Sci. 2020, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Spath, S.; Seitz, H. Influence of grain size and grain-size distribution on workability of granules with 3D printing. Int. J. Adv. Manuf. Technol. 2014, 70, 135–144. [Google Scholar] [CrossRef]
- Huber, C.; Abert, C.; Bruckner, F.; Pfaff, C.; Kriwet, J.; Groenefeld, M.; Teliban, I.; Vogler, C.; Suess, D. Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field. J. Appl. Phys. 2017, 122, 53904. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Tirado, A.; Nlebedim, I.C.; Rios, O.; Post, B.; Kunc, V.; Lowden, R.R.; Lara-Curzio, E.; Fredette, R.; Ormerod, J.; et al. Big area additive manufacturing of high performance bonded NdFeB magnets. Sci. Rep. 2016, 6, 36212. [Google Scholar] [CrossRef]
- Diodati, S.; Walton, R.I.; Mascotto, S.; Gross, S. Low-temperature wet chemistry synthetic approaches towards ferrites. Inorg. Chem. Front. 2020, 7, 3282–3314. [Google Scholar] [CrossRef]
- Palmero, E.M.; Casaleiz, D.; de Vicente, J.; Skårman, B.; Vidarsson, H.; Larsson, P.-O.; Bollero, A. Effect of particle size distribution on obtaining novel MnAlC-based permanent magnet composites and flexible filaments for 3D-printing. Addit. Manuf. 2020, 33, 101179. [Google Scholar] [CrossRef]
- Bittner, F.; Freudenberger, J.; Schultz, L.; Woodcock, T.G. The impact of dislocations on coercivity in L10-MnAl. J. Alloys Compd. 2017, 704, 528–536. [Google Scholar] [CrossRef]
- Lindquist, A.K.; Feinberg, J.M.; Harrison, R.J.; Loudon, J.C.; Newell, A.J. The effects of dislocations on crystallographic twins and domain wall motion in magnetite at the Verwey transition. Earth Planets Space 2019, 71, 5. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, A.H.; Hemeda, O.M.; Tawfik, A.; Hamad, M.A. Remarkable magnetic enhancement of type-M hexaferrite of barium in polystyrene polymer. AIP Adv. 2015, 5, 107131. [Google Scholar] [CrossRef]
- Bate, G. Magnetic recording materials since 1975. J. Magn. Magn. Mater. 1991, 100, 413–424. [Google Scholar] [CrossRef]
- Awadallah, A.; Mahmood, S.H.; Maswadeh, Y.; Bsoul, I.; Aloqaily, A. Structural and magnetic properties of vanadium doped M-type barium haxaferrite (BaFe12-xVxO19). IOP Conf. Ser. Mater. Sci. Eng. 2015, 92, 12006. [Google Scholar] [CrossRef]
- Auwal, I.A.; Güngüneş, H.; Güner, S.; Shirsath, S.E.; Sertkol, M.; Baykal, A. Structural, magneto-optical properties and cation distribution of SrBixLaxYxFe12-3xO19 (0.0 ≤ x ≤ 0.33) hexaferrites. Mater. Res. Bull. 2016, 80, 263–272. [Google Scholar] [CrossRef]
- Topkaya, R. Effect of Zn substitution on temperature dependent magnetic properties of BaFe12O19 hexaferrites. J. Alloys Compd. 2017, 725, 1230–1237. [Google Scholar] [CrossRef]
- Mohammad, A.M. Synthesis and study the structural and magnetic properties of cobalt substituted strontium hexaferrite. Int. J. Nanoelectron. Mater. 2020, 13, 283–294. [Google Scholar]
- Bate, G. Chapter 7 Recording materials. Handb. Ferromagn. Mater. 1980, 2, 381–507. [Google Scholar] [CrossRef]
- Cullity, B.D.; Graham, C.D. Introduction to Magnetic Materials, 2nd ed.; Willey: New Jersey, NJ, USA, 2009. [Google Scholar]
- Makled, M.H.; Sheha, E. An attempt to utilize hard magnetic BaFe12O19 phase as a cathode for magnesium batteries. J. Electron. Mater. 2019, 48, 1612–1616. [Google Scholar] [CrossRef]
- Behera, P.; Ravi, S. Influence of Ti-substitution on structural, magnetic and dielectric properties of M-type barium hexaferrite. J. Electron. Mater. 2019, 48, 5062–5274. [Google Scholar] [CrossRef]
- Faisal, M.; Saeed, A.; Larik, F.A.; Ghumro, S.A.; Rasheed, S.; Channar, P.A. WOWS sol–gel based synthesis and structural, morphological, electrical and magnetic characterization of Co-Sm doped M-type barium hexaferrite materials. J. Electron. Mater. 2018, 47, 7011–7022. [Google Scholar] [CrossRef]
- Rafiq, M.A.; Waqar, M.; Muhammad, Q.K.; Waleed, M.; Saleem, M.; Anwar, M.S. Conduction mechanism and magnetic behavior of Cu doped barium hexaferrite ceramics. J. Mater. Sci. Mater. Electron. 2018, 29, 5134–5142. [Google Scholar] [CrossRef]
- Winatapura, D.S.; Deswita, D.; Fisli, A.; Adi, W.A. Mechanosynthesis, crystal structure, magnetic and absorption properties of Al substituted BaFe12O19. Jur. Tek. 2019, 81, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Kitakami, O.; Goto, K.; Sakurai, T. A study of the magnetic domains of isolated fine particles of Ba ferrite. Jpn. J. Appl. Phys. 1988, 27, 2274–2277. [Google Scholar] [CrossRef]
- Hunyek, A.; Sirisathitkul, C. Electromagnetic and dynamic mechanical properties of extruded cobalt ferrite-polypropylene composites. Polym. Plast. Technol. Eng. 2011, 50, 593–598. [Google Scholar] [CrossRef]
- Mohammed, E.M.; Malini, K.A.; Joy, P.A.; Kulkarni, S.D.; Date, S.K.; Kurian, P.; Anantharaman, M.R. Processability, hardness, and magnetic properties of rubber ferrite composites containing manganese zinc ferrites. Plast. Rubber Compos. Macromol. Eng. 2002, 31, 106–113. [Google Scholar] [CrossRef] [Green Version]
Samples | Compositions | Magnetic Properties from Hysteresis Loops | |||
---|---|---|---|---|---|
BaM (wt%) | ABS (wt%) | Mr (emu/g) | Hc (Oe) | (BH)max (MGOe) | |
BaM_ex1 | 100 | 0 | 31.1 | 1777 | 1.30 |
BaM_ex2 | 100 | 0 | 32.2 | 1727 | 1.31 |
BaM pellet | 100 | 0 | 32.9 | 1909 | 1.39 |
BaM80-ABS20 | 80 | 20 | 27.8 | 1874 | 1.32 |
BaM70-ABS30 | 70 | 30 | 23.3 | 2052 | 1.98 |
BaM60-ABS40 | 60 | 40 | 20.5 | 1983 | 1.31 |
Samples | Magnetic Parameters of Linear Fitting | |||
---|---|---|---|---|
Ms (emu/g) | Mr/Ms | Keff × 103 (emu⋅Oe/g) | Ha (kOe) | |
BaM pellet | 66.8 | 0.49 | 500.50 | 14.98 |
BaM80-ABS20 | 59.3 | 0.47 | 471.57 | 15.90 |
BaM70-ABS30 | 48.3 | 0.48 | 425.59 | 17.62 |
BaM60-ABS40 | 43.5 | 0.47 | 383.16 | 17.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charoensuk, T.; Thongsamrit, W.; Ruttanapun, C.; Jantaratana, P.; Sirisathitkul, C. Loading Effect of Sol-Gel Derived Barium Hexaferrite on Magnetic Polymer Composites. Nanomaterials 2021, 11, 558. https://doi.org/10.3390/nano11030558
Charoensuk T, Thongsamrit W, Ruttanapun C, Jantaratana P, Sirisathitkul C. Loading Effect of Sol-Gel Derived Barium Hexaferrite on Magnetic Polymer Composites. Nanomaterials. 2021; 11(3):558. https://doi.org/10.3390/nano11030558
Chicago/Turabian StyleCharoensuk, Thanida, Wannisa Thongsamrit, Chesta Ruttanapun, Pongsakorn Jantaratana, and Chitnarong Sirisathitkul. 2021. "Loading Effect of Sol-Gel Derived Barium Hexaferrite on Magnetic Polymer Composites" Nanomaterials 11, no. 3: 558. https://doi.org/10.3390/nano11030558
APA StyleCharoensuk, T., Thongsamrit, W., Ruttanapun, C., Jantaratana, P., & Sirisathitkul, C. (2021). Loading Effect of Sol-Gel Derived Barium Hexaferrite on Magnetic Polymer Composites. Nanomaterials, 11(3), 558. https://doi.org/10.3390/nano11030558