Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes
Abstract
:1. Introduction
2. Theory and Formulation
3. Numerical Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akbas, S.D. Large deflection analysis of a fiber reinforced composite beam. Steel Compos. Struct. 2018, 27, 567–576. [Google Scholar] [CrossRef]
- Xie, Q.; Sinaei, H.; Shariati, M.; Khorami, M.; Mohamad, E.T.; Bui, D.T. An experimental study on the effect of CFRP on behavior of reinforce concrete beam column connections. Steel Compos. Struct. 2019, 30, 433–441. [Google Scholar] [CrossRef]
- Akbas, S.D. Nonlinear behavior of fiber reinforced cracked composite beams. Steel Compos. Struct. 2019, 30, 327–336. [Google Scholar] [CrossRef]
- Luo, Z.Y.; Sinaei, H.; Ibrahim, Z.; Shariati, M.; Jumaat, Z.; Wakil, K.; Pham, B.T.; Mohamad, E.T.; Khorami, M. Computational and experimental analysis of beam to column joints reinforced with CFRP plates. Steel Compos. Struct. 2019, 30, 271–280. [Google Scholar] [CrossRef]
- Shariat, M.; Shariati, M.; Madadi, A.; Wakil, K. Computational Lagrangian Multiplier Method by using for optimization and sensitivity analysis of rectangular reinforced concrete beams. Steel Compos. Struct. 2018, 29, 243–256. [Google Scholar] [CrossRef]
- Souza, P.R.; Nunes, C.S.; Freitas, A.R.; Belinato, J.R.; Pilau, E.J.; Fajardo, A.R.; da Silva, E.A.; Schreiner, W.H.; Muniz, E.C. Sub- and supercritical D-limonene technology as a green process to recover glass fibres from glass fibre-reinforced polyester composites. J. Clean. Prod. 2020, 254, 119984. [Google Scholar] [CrossRef]
- Huang, W.J.; Yan, W.; He, W.T.; Wang, K.; Long, L.J.; He, M.; Qin, S.H.; Yu, J. Synergistic flame-retardant effect of DOPO-based derivative and organo-montmorillonite on glass-fiber-reinforced polyamide 6 T. Polym. Advan. Technol. 2020, 31, 2083–2093. [Google Scholar] [CrossRef]
- Amiri, A.; Krosbakken, T.; Schoen, W.; Theisen, D.; Ulven, C.A. Design and manufacturing of a hybrid flax/carbon fiber composite bicycle frame. Proc. Ins. Mech. Eng. P-J. Sport. Eng. Technol. 2018, 232, 28–38. [Google Scholar] [CrossRef] [Green Version]
- De Cicco, D.; Asaee, Z.; Taheri, F. Use of Nanoparticles for Enhancing the Interlaminar Properties of Fiber-Reinforced Composites and Adhesively Bonded Joints—A Review. Nanomaterials 2017, 7, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Gao, L.; Zhou, X.F.; Ding, Y.L. Effective thermal and electrical conductivity of carbon nanotube composites. Chem. Phys. Lett. 2007, 434, 297–300. [Google Scholar] [CrossRef]
- Li-Chung, P.J.; Rajagopal, A.K. Green’s function theory of electrical and thermal transport in single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 113408. [Google Scholar] [CrossRef]
- Moisala, A.; Li, Q.; Kinloch, I.A.; Windle, A.H. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 2006, 66, 1285–1288. [Google Scholar] [CrossRef]
- Yakobson, B.I.; Avouris, P. Mechanical properties of carbon nanotubes. Appl. Phys. 2001, 80, 287–327. [Google Scholar] [CrossRef]
- Salvetat, J.P.; Bonard, J.M.; Thomson, N.H.; Kulik, A.J.; Forro, L.; Benoit, W.; Zuppiroli, L. Mechanical properties of carbon nanotubes. Appl. Phys. A-Mater. 1999, 69, 255–260. [Google Scholar] [CrossRef]
- Kuo, C.Y. Water purification of removal aqueous copper (II) by as-grown and modified multi-walled carbon nanotubes. Desalination 2009, 249, 781–785. [Google Scholar] [CrossRef]
- Star, A.; Hwang, S.I. Picking Flowers with Carbon Nanotube Sensors. ACS. Cent. Sci. 2020, 6, 461–463. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.; Amorim, L.; Nunes, J.P.; Rocha, L.A.; Silva, A.F.; Viana, J.C. Aligned carbon nanotube-based sensors for strain sensing applications. Sens. Actuat. A-Phys. 2019, 289, 157–164. [Google Scholar] [CrossRef]
- Selmi, A.; Bisharat, A. Free vibration of functionally graded SWNT reinforced aluminum alloy beam. J. Vibroeng. 2018, 20, 2151–2164. [Google Scholar] [CrossRef]
- Vodenitcharova, T.; Zhang, L.C. Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube. Int. J. Solids Struct. 2006, 43, 3006–3024. [Google Scholar] [CrossRef] [Green Version]
- Ke, L.L.; Yang, J.; Kitipornchai, S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 2010, 92, 676–683. [Google Scholar] [CrossRef]
- Yas, M.H.; Heshmati, M. Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Appl. Math. Model. 2012, 36, 1371–1394. [Google Scholar] [CrossRef] [Green Version]
- Yas, M.H.; Samadi, N. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Pres. Ves. Pip. 2012, 98, 119–128. [Google Scholar] [CrossRef]
- Deepak, B.P.; Ganguli, R.; Gopalakrishnan, S. Dynamics of rotating composite beams: A comparative study between CNT reinforced polymer composite beams and laminated composite beams using spectral finite elements. Int. J. Mech. Sci. 2012, 64, 110–126. [Google Scholar] [CrossRef]
- Ke, L.L.; Yang, J.; Kitipornchai, S. Dynamic Stability of Functionally Graded Carbon Nanotube-Reinforced Composite Beams. Mech. Adv. Mater. Struc. 2013, 20, 28–37. [Google Scholar] [CrossRef]
- Heshmati, M.; Yas, M.H. Free vibration analysis of functionally graded CNT-reinforced nanocomposite beam using Eshelby-Mori-Tanaka approach. J. Mech. Sci. Technol. 2013, 27, 3403–3408. [Google Scholar] [CrossRef]
- Wattanasakulpong, N.; Ungbhakorn, V. Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comp. Mater. Sci. 2013, 71, 201–208. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, Y. Numerical Analysis on Nonlinear Free Vibration of Carbon Nanotube Reinforced Composite Beams. Int. J. Struct. Stab. Dyn. 2014, 14, 1350056. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, Y. Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 2014, 38, 3741–3754. [Google Scholar] [CrossRef]
- Ansari, R.; Shojaei, M.F.; Mohammadi, V.; Gholami, R.; Sadeghi, F. Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos. Struct. 2014, 113, 316–327. [Google Scholar] [CrossRef]
- Heshmati, M.; Yas, M.H.; Daneshmand, F. A comprehensive study on the vibrational behavior of CNT-reinforced composite beams. Compos. Struct. 2015, 125, 434–448. [Google Scholar] [CrossRef]
- Heidari, M.; Arvin, H. Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes. J. Vib. Control. 2019, 25, 2063–2078. [Google Scholar] [CrossRef]
- Mayandi, K.; Jeyaraj, P. Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load. Proc. Ins. Mech. Eng. L-J. Mat. Des. Appl. 2015, 229, 13–28. [Google Scholar] [CrossRef]
- Fattahi, A.M.; Safaei, B. Buckling analysis of CNT-reinforced beams with arbitrary boundary conditions. Microsyst. Technol. 2017, 23, 5079–5091. [Google Scholar] [CrossRef]
- Babu Arumugam, A.; Rajamohan, V.; Bandaru, N.; Sudhagar, P.E.; Kumbhar, S.G. Vibration Analysis of a Carbon Nanotube Reinforced Uniform and Tapered Composite Beams. Arch. Acoust. 2019, 44, 309–320. [Google Scholar] [CrossRef]
- Mohseni, A.; Shakouri, M. Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation. Proc. Ins. Mech. Eng. L-J. Mat. Des. Appl. 2019, 233, 2478–2489. [Google Scholar] [CrossRef]
- Shenas, A.G.; Malekzadeh, P.; Ziaee, S. Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 2017, 162, 325–340. [Google Scholar] [CrossRef]
- Khosravi, S.; Arvin, H.; Kiani, Y. Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams. Compos. Part B-Eng. 2019, 175, 107178. [Google Scholar] [CrossRef]
- Civalek, Ö.; Dastjerdi, S.; Akbaş, Ş.D.; Akgöz, B. Vibration analysis of carbon nanotube-reinforced composite microbeams. Math. Meth. Appl. Sci 2021. [Google Scholar] [CrossRef]
- Jalaei, M.; Civalek, O. On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int. J. Eng. Sci. 2019, 143, 14–32. [Google Scholar] [CrossRef]
- Akgöz, B.; Civalek, O. Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 2013, 224, 2185–2201. [Google Scholar] [CrossRef]
- Van Do, V.N.; Jeon, J.T.; Lee, C.H. Dynamic analysis of carbon nanotube reinforced composite plates by using Bezier extraction based isogeometric finite element combined with higher-order shear deformation theory. Mech. Mater. 2020, 142, 103307. [Google Scholar] [CrossRef]
- Boulal, A.; Bensattalah, T.; Karas, A.; Zidour, M.; Heireche, H.; Bedia, E.A.A. Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton’s energy principle. Struct. Eng. Mech. 2020, 73, 209–223. [Google Scholar] [CrossRef]
- Bouazza, M.; Zenkour, A.M. Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory. Arch. Appl. Mech. 2020, 90, 1755–1769. [Google Scholar] [CrossRef]
- Tornabene, F.; Fantuzzi, N.; Bacciocchi, M. Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes. Compos. Part B-Eng. 2017, 115, 449–476. [Google Scholar] [CrossRef]
- Thang, P.T.; Nguyen, T.T.; Lee, J. A new approach for nonlinear buckling analysis of imperfect functionally graded carbon nanotube-reinforced composite plates. Compos. Part B-Eng. 2017, 127, 166–174. [Google Scholar] [CrossRef]
- Fantuzzi, N.; Tornabene, F.; Bacciocchi, M.; Dimitri, R. Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates. Compos. Part B-Eng. 2017, 115, 384–408. [Google Scholar] [CrossRef]
- Civalek, O. Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos. Part B-Eng. 2017, 111, 45–59. [Google Scholar] [CrossRef]
- Ansari, R.; Torabi, J.; Shojaei, M.F. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Compos. Part B-Eng. 2017, 109, 197–213. [Google Scholar] [CrossRef]
- Vinyas, M. A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Compos. Part B-Eng. 2019, 158, 286–301. [Google Scholar] [CrossRef]
- Civalek, Ö.; Dastjerdi, S.; Akgöz, B. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mech. Based Des. Struc. Mach. 2020, 1–18. [Google Scholar] [CrossRef]
- Gholami, R.; Ansari, R. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading. Eur. Phys. J. Plus 2018, 133, 56. [Google Scholar] [CrossRef]
- Gholami, R.; Ansari, R. Nonlinear bending of third-order shear deformable carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with different edge supports. Eur. Phys. J. Plus 2018, 133, 282. [Google Scholar] [CrossRef]
- Mohammadi, M.; Arefi, M.; Dimitri, R.; Tornabene, F. Higher-Order Thermo-Elastic Analysis of FG-CNTRC Cylindrical Vessels Surrounded by a Pasternak Foundation. Nanomaterials 2019, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- Sofiyev, A.H.; Tornabene, F.; Dimitri, R.; Kuruoglu, N. Buckling Behavior of FG-CNT Reinforced Composite Conical Shells Subjected to a Combined Loading. Nanomaterials 2020, 10, 419. [Google Scholar] [CrossRef] [Green Version]
- Farajpour, M.R.; Karimi, M.; Shahidi, A.R.; Farajpour, A. Smart reinforced nano/microscale plates for mass detection at ultrasmall levels: A nonlocal continuum-based approach. Eur. Phys. J. Plus 2019, 134, 568. [Google Scholar] [CrossRef]
- Shen, H.S. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 2009, 91, 9–19. [Google Scholar] [CrossRef]
Patterns of CNTs | |
---|---|
UD | |
FG-V | |
FG-Λ | |
FG-O | |
FG-X |
k | 0 | 0.4 | 1 | 2 | 5 | 10 | Al-Alloy |
---|---|---|---|---|---|---|---|
ANSYS [19] | 3.4668 | 3.2718 | 3.1496 | 3.0795 | 3.0084 | 2.9546 | 2.8500 |
Present | 3.663 | 3.459 | 3.342 | 3.271 | 3.193 | 3.134 | 2.971 |
Volume Fractions of CNTs | Present | Wattanasakulpong and Ungbhakorn [27] |
---|---|---|
UD-Beam | 0.9905 | 0.9976 |
Ʌ-Beam | 0.8562 | 0.8592 |
X-Beam | 1.1373 | 1.1485 |
VCNT | (rd/s) | ||
---|---|---|---|
UD-Beam | Ʌ-Beam | X-Beam | |
0.12 | 592.98 | 445.39 | 692.32 |
0.17 | 723.80 | 538.75 | 850.10 |
0.28 | 881.36 | 664.42 | 1028.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Civalek, Ö.; Akbaş, Ş.D.; Akgöz, B.; Dastjerdi, S. Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials 2021, 11, 571. https://doi.org/10.3390/nano11030571
Civalek Ö, Akbaş ŞD, Akgöz B, Dastjerdi S. Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials. 2021; 11(3):571. https://doi.org/10.3390/nano11030571
Chicago/Turabian StyleCivalek, Ömer, Şeref D. Akbaş, Bekir Akgöz, and Shahriar Dastjerdi. 2021. "Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes" Nanomaterials 11, no. 3: 571. https://doi.org/10.3390/nano11030571
APA StyleCivalek, Ö., Akbaş, Ş. D., Akgöz, B., & Dastjerdi, S. (2021). Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials, 11(3), 571. https://doi.org/10.3390/nano11030571