Calcium Silicate-Based Biocompatible Light-Curable Dental Material for Dental Pulpal Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dental Materials
2.2. Physiochemical Properties
2.3. Inorganic Amount and Size Distribution and Viscosity
2.4. Hydroxyl Ion (pH) and Calcium Ion (ppm) Release Test
2.5. Mechanical Properties
2.6. Cell Culture and Culture Conditions
2.7. Cell Viability Test
2.8. Cell Imaging
2.9. Alizarin Red Staining (ARS) and Alkaline Phosphatase (ALP) Activity Assay
3. Results and Discussion
3.1. Physiochemical Properties of Nanoparticle-Incorporated, Light-Curable MTA
3.2. Hydroxyl Ions (pH) and Calcium Ions (ppm) Released from Nanoparticle-Incorporated Light-Curable MTA
3.3. Mechanical Properties of Nanoparticle-Incorporated Light-Curable MTA
3.4. Cell Viability and Odontoblastic Differentiation of Nanoparticle-Incorporated Light-Curable MTA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Camilleri, J.; Laurent, P.; About, I. Hydration of biodentine, theracal lc, and a prototype tricalcium silicate–based dentin replacement material after pulp capping in entire tooth cultures. J. Endod. 2014, 40, 1846–1854. [Google Scholar] [CrossRef]
- Jo, S.B.; Kim, H.K.; Lee, H.N.; Kim, Y.-J.; Patel, K.D.; Campbell Knowles, J.; Lee, J.-H.; Song, M. Physical properties and biofunctionalities of bioactive root canal sealers in vitro. Nanomaterials 2020, 10, 1750. [Google Scholar] [CrossRef]
- Mozayeni, M.A.; Milani, A.S.; Marvasti, L.A.; Asgary, S. Cytotoxicity of calcium enriched mixture cement compared with mineral trioxide aggregate and intermediate restorative material. Aust. Endod. J. 2012, 38, 70–75. [Google Scholar] [CrossRef]
- Poggio, C.; Lombardini, M.; Colombo, M.; Beltrami, R.; Rindi, S. Solubility and pH of direct pulp capping materials: A comparative study. J. Appl. Biomater. Funct. Mater. 2015, 13, 181–185. [Google Scholar] [CrossRef]
- Gandolfi, M.; Siboni, F.; Prati, C. Chemical–physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int. Endod. J. 2012, 45, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Heo, S.-M.; Hong, S.-O.; Hwang, Y.-C.; Lee, K.-W.; Min, K.-S. Odontogenic effect of a fast-setting pozzolan-based pulp capping material. J. Endod. 2014, 40, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Shin, Y.; Kim, S.-O.; Lee, H.-S.; Choi, H.-J.; Song, J.S. Comparative study of pulpal responses to pulpotomy with ProRoot MTA, RetroMTA, and TheraCal in dogs’ teeth. J. Endod. 2015, 41, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiar, H.; Nekoofar, M.H.; Aminishakib, P.; Abedi, F.; Moosavi, F.N.; Esnaashari, E.; Azizi, A.; Esmailian, S.; Ellini, M.R.; Mesgarzadeh, V. Human pulp responses to partial pulpotomy treatment with TheraCal as compared with Biodentine and ProRoot MTA: A clinical trial. J. Endod. 2017, 43, 1786–1791. [Google Scholar] [CrossRef]
- Fleisch, A.F.; Sheffield, P.E.; Chinn, C.; Edelstein, B.L.; Landrigan, P.J. Bisphenol A and related compounds in dental materials. Pediatrics 2010, 126, 760–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafei, A.; Ramzy, M.M.; Hegazy, A.I.; Husseny, A.K.; EL-hadary, U.G.; Taha, M.M.; Mosa, A.A. The molecular mechanisms of action of the endocrine disrupting chemical bisphenol A in the development of cancer. Gene 2018, 647. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-C.; Chen, L.-I.; Chan, C.-P.; Lee, J.-J.; Wang, T.-M.; Yang, T.-T.; Lin, P.-S.; Lin, H.-J.; Chang, H.-H.; Jeng, J.-H. The role of reactive oxygen species and hemeoxygenase-1 expression in the cytotoxicity, cell cycle alteration and apoptosis of dental pulp cells induced by BisGMA. Biomaterials 2010, 31, 8164–8171. [Google Scholar] [CrossRef]
- Nathanson, D. In vitro estrogenic activity of leachable components from dental sealants and composites. In Proceedings of the 77th General Session of IADR, Vancouver, BC, Canada, 10–13 March 1999; Volume 194, pp. 222–226. [Google Scholar]
- Olea, N.; Pulgar, R.; Pérez, P.; Olea-Serrano, F.; Rivas, A.; Novillo-Fertrell, A.; Pedraza, V.; Soto, A.M.; Sonnenschein, C. Estrogenicity of resin-based composites and sealants used in dentistry. Environ. Health Perspect. 1996, 104, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.-K.; Cha, J.-R.; Knowles, J.C.; Kim, H.-W.; Lee, J.-H.; Lee, H.-H. Development of Bis-GMA-free biopolymer to avoid estrogenicity. Dent. Mater. 2020, 36, 157–166. [Google Scholar] [CrossRef] [PubMed]
- AlSahafi, R.; Balhaddad, A.A.; Mitwalli, H.; Salem Ibrahim, M.; Melo, M.A.S.; Oates, T.W.; Xu, H.H.K.; Weir, M.D. Novel crown cement containing antibacterial monomer and calcium phosphate nanoparticles. Nanomaterials 2020, 10, 2001. [Google Scholar] [CrossRef]
- Barszczewska-Rybarek, I.M. A guide through the dental dimethacrylate polymer network structural characterization and interpretation of physico-mechanical properties. Materials 2019, 12, 4057. [Google Scholar] [CrossRef] [Green Version]
- Priyadarsini, S.; Mukherjee, S.; Mishra, M. Nanoparticles used in dentistry: A review. J. Oral Biol. Craniofacial Res. 2018, 8, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Pameijer, C.H.; Garcia-Godoy, F.; Morrow, B.R.; Jefferies, S.R. Flexural strength and flexural fatigue properties of resin-modified glass ionomers. J. Clin. Dent. 2015, 26, 23–27. [Google Scholar]
- Jun, S.-K.; Lee, J.-H.; Lee, H.-H. The biomineralization of a bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells. Biomed Res. Int. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Jun, S.-K.; Yoon, J.-Y.; Mahapatra, C.; Park, J.H.; Kim, H.-W.; Kim, H.-R.; Lee, J.-H.; Lee, H.-H. Ceria-incorporated MTA for accelerating odontoblastic differentiation via ROS downregulation. Dent. Mater. 2019, 35, 1291–1299. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jo, J.-K.; Kim, D.-A.; Patel, K.D.; Kim, H.-W.; Lee, H.-H. Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dent. Mater. 2018, 34, e63–e72. [Google Scholar] [CrossRef]
- Phani, A.; Putkaradze, V.; Hawk, J.E.; Prashanthi, K.; Thundat, T. A nanostructured surface increases friction exponentially at the solid-gas interface. Sci. Rep. 2016, 6, 32996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupit, C.I.; Li, X.; Maekawa, R.; Hasegawa, N.; Iwase, H.; Takata, S.; Shibayama, M. Nanostructures and viscosities of nafion dispersions in water/ethanol from dilute to concentrated regimes. Macromolecules 2020, 53, 1464–1473. [Google Scholar] [CrossRef]
- Nascimento, M.M.; Gordan, V.V.; Qvist, V.; Bader, J.D.; Rindal, D.B.; Williams, D.O.; Gewartowski, D.; Fellows, J.L.; Litaker, M.S.; Gilbert, G.H. Restoration of noncarious tooth defects by dentists in The Dental Practice-Based Research Network. JADA 2011, 142, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- McCabe, J.F.; Rusby, S. Water absorption, dimensional change and radial pressure in resin matrix dental restorative materials. Biomaterials 2003, 25. [Google Scholar] [CrossRef] [PubMed]
- Toledano, M.; Osorio, R.; Osorio, E.; Fuentes, V.; Prati, C.; Garcia-Godoy, F. Sorption and solubility of resin-based restorative dental materials. J. Dent. 2002, 31, 43–50. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Bernardi, M.; Rojas, S.; Andreeta, M.; de Rastelli, A.; Hernandes, A.; Bagnato, V. Thermal analysis and structural investigation of different dental composite resins. J. Therm. Anal. 2008, 94, 791–796. [Google Scholar] [CrossRef]
- Das, S.K.; Khan, M.R.; Guha, A.K.; Naskar, N. Bio-inspired fabrication of silver nanoparticles on nanostructure silica, characterization and application as highly efficient hydrogenation catalyst. Green Chem. 2013. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, J.; He, J. Mesoporous nano-silica serves as the degradation inhibitor in polymer dielectrics. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Bannach, G.; Cavalheiro, C.C.S.; Calixto, L.; Cavalheiro, E.T.G. Thermoanalytical study of monomers: BisGMA, BisEMA, TEGDMA, UDMA and their mixture. Braz. J. Therm. Anal. 2015, 4, 28–34. [Google Scholar] [CrossRef]
- Punnia-Moorthy, A. Evaluation of pH changes in inflammation of the subcutaneous air pouch lining in the rat, induced by carrageenan, dextran and staphylococcus aureus. J. Oral Pathol. Med. 1987, 16, 36–44. [Google Scholar] [CrossRef]
- Arandi, N.Z.; Rabi, T. TheraCal LC: From biochemical and bioactive properties to clinical applications. Int. J. Dent. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Arias-Moliz, M.T.; Farrugia, C.; Lung, C.Y.K.; Wismayer, P.S.; Camilleri, J. Antimicrobial and biological activity of leachate from light curable pulp capping materials. J. Dent. 2017, 64, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Poggio, C.; Arciola, C.R.; Beltrami, R.; Monaco, A.; Dagna, A.; Lombardini, M.; Visai, L. Cytocompatibility and antibacterial properties of capping materials. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Hirose, Y.; Yamaguchi, M.; Kawabata, S.; Murakami, M.; Nakashima, M.; Gotoh, M.; Yamamoto, T. Effects of extracellular pH on dental pulp cells in vitro. J. Endod. 2016. [Google Scholar] [CrossRef]
- Deepthi, V.; Mallikarjun, E.; Nagesh, B.; Mandava, P. Effect of acidic pH on microhardness and microstructure of theraCal LC, endosequence, mineral trioxide aggregate, and biodentine when used as root repair material. J. Conserv. Dent. JCD 2018, 21, 408. [Google Scholar] [CrossRef] [PubMed]
- Namazikhah, M.; Nekoofar, M.H.; Sheykhrezae, M.; Salariyeh, S.; Hayes, S.J.; Bryant, S.T.; Mohammadi, M.; Dummer, P.M.H. The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. Int. Endod. J. 2008, 41, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Hong, M.-H.; Kwon, T.-Y. Dentin bonding of TheraCal LC calcium silicate containing an acidic monomer: An in vitro study. Materials 2020, 13, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohtsuki, C.; Kamitakahara, M.; Miyazaki, T. Coating bone-like apatite onto organic substrates using solutions mimicking body fluid. J. Tissue Eng. Regen. Med. 2007, 1, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Inami, C.; Nishitani, Y.; Haraguchi, N.; Itsuno, S. Evaluation of the solubility, calcium-release ability, and apatite-forming ability of a novel chemically curable mineral trioxide aggregate material. J. Hard Tissue Biol. 2019, 28, 273–280. [Google Scholar] [CrossRef]
- Yano, J.; Kitamura, C.; Nishihara, T.; Tokuda, M.; Washio, A.; Chem, K.-K.; Terashita, M. Apoptosis and survivability of human dental pulp cells under exposure to Bis-GMA. J. Appl. Oral Sci. 2010, 19, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moharamzadeh, K.; Van Noort, R.; Brook, I.M.; Scutt, A.M. Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent. Mater. 2007, 23, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Rathbun, M.A.; Craig, R.G.; Hanks, C.T.; Filisko, F.E. Cytotoxicity of a BIS-GMA dental composite before and after leaching in organic solvents. J. Biomed. Mater. Res. 1991, 25, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, H.; Nakakura-Ohshima, K.; Takeuchi, K.; Hoshino, M.; Takano, Y.; Maeda, T. Pulpal regeneration after cavity preparation, with special reference to close spatio-relationships between odontoblasts and immunocompetent cells. Microsc. Res. Tech. 2003, 60, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Kardos, T.B.; Hunter, A.R.; Hanlin, S.M.; Kirk, E.E.J. Odontoblast differentiation: A response to environmental calcium? Dent. Traumatol. 1998, 14, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loison-Robert, L.S.; Tassin, M.; Bonte, E.; Berbar, T.; Isaac, J.; Berdal, A.; Simon, S.; Fournier, B.P.J. In vitro effects of two silicate-based materials, Biodentine and BioRoot RCS, on dental pulp stem cells in models of reactionary and reparative dentinogenesis. PLoS ONE 2018, 13, e0190014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozynska, J.; Metlerski, M.; Lipski, M.; Nowicka, A. Tooth discoloration induced by different calcium silicate-based cements: A systematic review of in vitro studies. J. Endod. 2017, 43, 1593–1601. [Google Scholar] [CrossRef]
Product Name | Mixing Ratio | Method | Light Curing Time | Manufacturer | Composition (%) |
---|---|---|---|---|---|
Bright MTA capping | Single syringe (no-mix) | Light-curing | 20 s | GENOSS (Korea) |
|
TheraCal LC | Single syringe (no-mix) | Light-curing | 20 s | Bisco (USA) |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-M.; Rhee, W.-R.; Park, K.-M.; Kim, Y.-J.; Ahn, J.; Knowles, J.C.; Kim, J.; Shin, J.; Jang, T.-S.; Jun, S.-K.; et al. Calcium Silicate-Based Biocompatible Light-Curable Dental Material for Dental Pulpal Complex. Nanomaterials 2021, 11, 596. https://doi.org/10.3390/nano11030596
Park S-M, Rhee W-R, Park K-M, Kim Y-J, Ahn J, Knowles JC, Kim J, Shin J, Jang T-S, Jun S-K, et al. Calcium Silicate-Based Biocompatible Light-Curable Dental Material for Dental Pulpal Complex. Nanomaterials. 2021; 11(3):596. https://doi.org/10.3390/nano11030596
Chicago/Turabian StylePark, Sung-Min, Woo-Rim Rhee, Kyu-Min Park, Yu-Jin Kim, Junyong Ahn, Jonathan C. Knowles, Jongbin Kim, Jisun Shin, Tae-Su Jang, Soo-Kyung Jun, and et al. 2021. "Calcium Silicate-Based Biocompatible Light-Curable Dental Material for Dental Pulpal Complex" Nanomaterials 11, no. 3: 596. https://doi.org/10.3390/nano11030596
APA StylePark, S. -M., Rhee, W. -R., Park, K. -M., Kim, Y. -J., Ahn, J., Knowles, J. C., Kim, J., Shin, J., Jang, T. -S., Jun, S. -K., Lee, H. -H., & Lee, J. -H. (2021). Calcium Silicate-Based Biocompatible Light-Curable Dental Material for Dental Pulpal Complex. Nanomaterials, 11(3), 596. https://doi.org/10.3390/nano11030596