Development of Mesopore Structure of Mixed Metal Oxide through Albumin-Templated Coprecipitation and Reconstruction of Layered Double Hydroxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of LDHs and LDOs: AH-1, AO-1, AH-2 and AO-2
2.3. Characterization
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsieh, H.-C.; Chen, Y.-S.; Weng, S.-F.; Hsieh, Y.-P.; Lee, C.-S. Ruthenium substituted pyrochlore metal oxide catalysts Y2Ce2−xRuxO7−δ (x = 0 − 0.4) for oxidative steam reforming of ethanol. Int. J. Hydrogen Energy 2020, 45, 19291–19303. [Google Scholar] [CrossRef]
- Miura, N.; Lu, G.; Yamazoe, N. High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode. Sens. Actuators B Chem. 1998, 52, 169–178. [Google Scholar] [CrossRef]
- Kandula, S.; Jeevanandam, P. Synthesis of Silica@Ni-Co Mixed Metal Oxide Core–Shell Nanorattles and Their Potential Use as Effective Adsorbents for Waste Water Treatment. Eur. J. Inorg. Chem. 2015, 2015, 4260–4274. [Google Scholar] [CrossRef]
- Sultana, S.S.P.; Kishore, D.H.V.; Kuniyil, M.; Khan, M.; Siddiqui, M.R.H.; Alwarthan, A.; Prasad, K.R.S.; Ahmad, N.; Adil, S.F. Promoting effects of thoria on the nickel-manganese mixed oxide catalysts for the aerobic oxidation of benzyl alcohol. Arab. J. Chem. 2017, 10, 448–457. [Google Scholar] [CrossRef]
- Guo, Z.; Zheng, J.E.; Liu, Y.; Chu, W. Insight into the role of metal/oxide interaction and Ni availabilities on NiAl mixed metal oxide catalysts for methane decomposition. Appl. Catal. A Gen. 2018, 555, 1–11. [Google Scholar] [CrossRef]
- Védrine, J.C. Heterogeneous Catalysis on Metal Oxides. Catalysts 2017, 7, 341. [Google Scholar] [CrossRef] [Green Version]
- Sangkhum, P.; Yanamphorn, J.; Wangriya, A.; Ngamcharussrivichai, C. Ca–Mg–Al ternary mixed oxides derived from layered double hydroxide for selective etherification of glycerol to short-chain polyglycerols. Appl. Clay Sci. 2019, 173, 79–87. [Google Scholar] [CrossRef]
- Yuan, X.; Niu, J.; Lv, Y.; Jing, Q.; Li, L. Ultrahigh-capacity and fast-rate removal of graphene oxide by calcined MgAl layered double hydroxide. Appl. Clay Sci. 2018, 156, 61–68. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, T.; Yang, F.; Lyu, M.; Chen, C.; O’Hare, D.; Wang, R. Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides. J. Mater. Chem. A 2020, 8, 16421–16428. [Google Scholar] [CrossRef]
- Xie, J.; Yamaguchi, T.; Oh, J.-M. Synthesis of a mesoporous Mg–Al–mixed metal oxide with P123 template for effective removal of Congo red via aggregation-driven adsorption. J. Solid State Chem. 2021, 293, 121758. [Google Scholar] [CrossRef]
- Kwak, H.; Park, K.H.; Han, D.; Nam, K.-W.; Kim, H.; Jung, Y.S. Li+ conduction in air-stable Sb-Substituted Li4SnS4 for all-solid-state Li-Ion batteries. J. Power Sources 2020, 446, 227338. [Google Scholar] [CrossRef]
- Fu, P.; Zhao, Y.; Dong, Y.; An, X.; Shen, G. Synthesis of Li3V2(PO4)3 with high performance by optimized solid-state synthesis routine. J. Power Sources 2006, 162, 651–657. [Google Scholar] [CrossRef]
- Bayal, N.; Jeevanandam, P. Synthesis of TiO2–MgO mixed metal oxide nanoparticles via a sol–gel method and studies on their optical properties. Ceram. Int. 2014, 40, 15463–15477. [Google Scholar] [CrossRef]
- Hernadez, A.; Lopez, T.; Tzompantzi, F. Photocatalytic properties of Ba3Li2Ti8O20 sol–gel. J. Mater. Chem. 2002, 12, 2820–2824. [Google Scholar] [CrossRef]
- Makgae, M.E.; Klink, M.J.; Crouch, A.M. Performance of sol–gel Titanium Mixed Metal Oxide electrodes for electro-catalytic oxidation of phenol. Appl. Catal. B Environ. 2008, 84, 659–666. [Google Scholar] [CrossRef]
- Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Vaccari, A. Preparation and catalytic properties of cationic and anionic clays. Catal. Today 1998, 41, 53–71. [Google Scholar] [CrossRef]
- De Roy, A.; Forano, C.; Besse, J.P. Layered double hydroxides: Synthesis and post-synthesis modification. In Layered Double Hydroxides: Present and Future; Nova Science Publishers: Hauppauge, NY, USA, 2001; pp. 1–39. [Google Scholar]
- Gu, P.; Zhang, S.; Li, X.; Wang, X.; Wen, T.; Jehan, R.; Alsaedi, A.; Hayat, T.; Wang, X. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environ. Pollut. 2018, 240, 493–505. [Google Scholar] [CrossRef]
- Yu, G.; Zhou, Y.; Yang, R.; Wang, M.; Shen, L.; Li, Y.; Xue, N.; Guo, X.; Ding, W.; Peng, L. Dehydration and Dehydroxylation of Layered Double Hydroxides: New Insights from Solid-State NMR and FT-IR Studies of Deuterated Samples. J. Phys. Chem. C 2015, 119, 12325–12334. [Google Scholar] [CrossRef]
- Pérez-Ramírez, J.; Mul, G.; Kapteijn, F.; Moulijn, J.A. Investigation of the thermal decomposition of Co–Al hydrotalcite in different atmospheres. J. Mater. Chem. 2001, 11, 821–830. [Google Scholar] [CrossRef]
- Yang, W.; Kim, Y.; Liu, P.K.T.; Sahimi, M.; Tsotsis, T.T. A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide. Chem. Eng. Sci. 2002, 57, 2945–2953. [Google Scholar] [CrossRef]
- Park, D.-H.; Jang, M.W.; Shul, Y.-G.; Choy, J.-H. Sepiocite, Sepiolite-Like Nanoclay Derived from Hydrotalcite-Like Layered Double Hydroxide. J. Nanosci. Nanotechnol. 2011, 11, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhang, J.; Peng, Y.; Zhou, J.; Ruan, X.; Liu, J.; Liu, Q.; Xi, Y.; Frost, R.; Qian, G. An investigation into mechanism of cation adsorption by reconstruction of calcined layered double hydroxide. Microporous Mesoporous Mater. 2017, 242, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Saiah, F.B.D.; Su, B.-L.; Bettahar, N. Nickel–iron layered double hydroxide (LDH): Textural properties upon hydrothermal treatments and application on dye sorption. J. Hazard. Mater. 2009, 165, 206–217. [Google Scholar] [CrossRef]
- Valente, J.S.; Tzompantzi, F.; Prince, J. Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAl layered double hydroxides. Appl. Catal. B Environ. 2011, 102, 276–285. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Kim, B.-K.; Hirata, S.; Inada, M.; Oh, J.-M. Particle size effect of layered double hydroxide on the porosity of calcined metal oxide. Appl. Clay Sci. 2020, 195, 105701. [Google Scholar] [CrossRef]
- Ko, S.-J.; Yamaguchi, T.; Salles, F.; Oh, J.-M. Systematic utilization of layered double hydroxide nanosheets for effective removal of methyl orange from an aqueous system by π-π stacking-induced nanoconfinement. J. Environ. Manag. 2021, 277, 111455. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Rodriguez, P.; de Ruiter, M.; Wijnands, T.; ten Elshof, J.E. Porous Layered Double Hydroxides Synthesized using Oxygen Generated by Decomposition of Hydrogen Peroxide. Sci. Rep. 2017, 7, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aramendía, M.A.; Avilés, Y.; Borau, V.; Luque, J.M.; Marinas, J.M.; Ruiz, J.R.; Urbano, F.J. Thermal decomposition of Mg/Al and Mg/Ga layered-double hydroxides: A spectroscopic study. J. Mater. Chem. 1999, 9, 1603–1607. [Google Scholar] [CrossRef]
- Elhalil, A.; Farnane, M.; Machrouhi, A.; Mahjoubi, F.Z.; Elmoubarki, R.; Tounsadi, H.; Abdennouri, M.; Barka, N. Effects of molar ratio and calcination temperature on the adsorption performance of Zn/Al layered double hydroxide nanoparticles in the removal of pharmaceutical pollutants. J. Sci. Adv. Mater. Devices 2018, 3, 188–195. [Google Scholar] [CrossRef]
- Kim, B.-K.; Lee, D.-Y.; Gwak, G.-H.; Han, Y.-S.; Oh, J.-M. Zn-Fe mixed metal oxides from metal hydroxide precursor: Effect of calcination temperature on phase evolution, porosity, and catalytic acidity. J. Solid State Chem. 2019, 269, 454–458. [Google Scholar] [CrossRef]
- Di, G.; Zhu, Z.; Zhang, H.; Zhu, J.; Lu, H.; Zhang, W.; Qiu, Y.; Zhu, L.; Küppers, S. Simultaneous removal of several pharmaceuticals and arsenic on Zn-Fe mixed metal oxides: Combination of photocatalysis and adsorption. Chem. Eng. J. 2017, 328, 141–151. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, Z.; Fan, G.; Li, F. The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral. Catal. Sci. Technol. 2014, 4, 1123–1131. [Google Scholar] [CrossRef]
- Kim, B.-K.; Gwak, G.-H.; Okada, T.; Oh, J.-M. Effect of particle size and local disorder on specific surface area of layered double hydroxides upon calcination-reconstruction. J. Solid State Chem. 2018, 263, 60–64. [Google Scholar] [CrossRef]
- Chen, C.; Wangriya, A.; O’Hare, D. Tuneable ultra high specific surface area Mg/Al-CO3 layered double hydroxides. Dalton Trans. 2015, 44, 16392–16398. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Chen, C.; Suo, H.; Wang, Q.; Shi, Y.; O’Hare, D.; Cai, N. Synthesis of elevated temperature CO2 adsorbents from aqueous miscible organic-layered double hydroxides. Energy 2019, 167, 960–969. [Google Scholar] [CrossRef]
- Chen, C.; Yang, M.; Wang, Q.; Buffet, J.C.; O’Hare, D. Synthesis and characterisation of aqueous miscible organic-layered double hydroxides. J. Mater. Chem. A 2014, 2, 15102–15110. [Google Scholar] [CrossRef]
- Ribeiro, C.; Bressiani, J.C.; Helena, A.; Bressiani, A. A study of the consolidation method with albumin to obtain porous b-TCP ceramics. Mater. Res. 2007, 10, 307–310. [Google Scholar] [CrossRef]
- Silva, O.G.; Alve, M.M.; Fonseca, M.G.; Jaber, M. Mesoporous calcium phosphate using casein as a template: Application to bovine serum albumin sorption. Colloids Surf. B Biointerfaces 2017, 158, 480–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Guo, Y.; Xu, L.; Zhuang, G.; Zheng, Y.; Sun, D.; Huang, J.; Li, Q. Bovine serum albumin templated porous CeO2 to support Au catalyst for benzene oxidation. Mol. Catal. 2020, 486, 110849. [Google Scholar] [CrossRef]
- Kanthimathi, M.; Dhathathreyan, A.; Nair, B.U. Nanosized nickel oxide using bovine serum albumin as template. Mater. Lett. 2004, 58, 2914–2917. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Zhang, G.; Jia, Q.; Li, L. DNA-templated porous nanoplatform towards programmed “double-hit” cancer therapy via hyperthermia and immunogenicity activation. Biomaterials 2019, 219, 119395. [Google Scholar] [CrossRef] [PubMed]
- Tokudome, Y.; Fukui, M.; Tarutani, N.; Nishimura, S.; Prevot, V.; Forano, C.; Poologasundarampillai, G.; Lee, P.D.; Takahashi, M. High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure. Langmuir 2016, 32, 8826–8833. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, Y.; Lv, X. Bio-template synthesis of Mo-doped polymer carbon nitride for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 248, 44–53. [Google Scholar] [CrossRef]
- Deng, D.; Tang, R.; Liao, X.; Shi, B. Using Collagen Fiber as a Template to Synthesize Hierarchical Mesoporous Alumina Fiber. Langmuir 2008, 24, 368–370. [Google Scholar] [CrossRef]
- Varga, G.; Somosi, Z.; Kónya, Z.; Kukovecz, Á.; Pálinkó, I.; Szilagyi, I. A colloid chemistry route for the preparation of hierarchically ordered mesoporous layered double hydroxides using surfactants as sacrificial templates. J. Colloid Interface Sci. 2021, 581, 928–938. [Google Scholar] [CrossRef]
- Pahalagedara, M.N.; Pahalagedara, L.R.; Kuo, C.-H.; Dharmarathna, S.; Suib, S.L. Ordered Mesoporous Mixed Metal Oxides: Remarkable Effect of Pore Size on Catalytic Activity. Langmuir 2014, 30, 8228–8237. [Google Scholar] [CrossRef]
- Oka, Y.; Kuroda, Y.; Matsuno, T.; Kamata, K.; Wada, H.; Shimojima, A.; Kuroda, K. Preparation of Mesoporous Basic Oxides through Assembly of Monodispersed Mg–Al Layered Double Hydroxide Nanoparticles. Chem. A Eur. J. 2017, 23, 9362–9368. [Google Scholar] [CrossRef]
- Gu, Z.; Zuo, H.; Li, L.; Wua, A.; Xu, Z.P. Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake. J. Mater. Chem. B 2015, 3, 3331–3339. [Google Scholar] [CrossRef]
- Yan, C.; Cheng, T.; Shang, J. Effect of bovine serum albumin on stability and transport of kaolinite colloid. Water Res. 2019, 155, 204–213. [Google Scholar] [CrossRef]
- Jung, S.Y.; Kim, H.M.; Rhee, K.J.; Oh, J.M. Physicochemical Properties and Hematocompatibility of Layered Double Hydroxide-Based Anticancer Drug Methotrexate Delivery System. Pharmaceutics 2020, 12, 1210. [Google Scholar] [CrossRef]
- Jeung, D.-G.; Kim, H.-J.; Oh, J.-M. Incorporation of Glycine max Merrill Extract into Layered Double Hydroxide through Ion-Exchange and Reconstruction. Nanomaterials 2019, 9, 1262. [Google Scholar] [CrossRef] [Green Version]
- Kooli, F.; Chisem, I.C.; Vucelic, M.; Jones, W. Synthesis and Properties of Terephthalate and Benzoate Intercalates of Mg–Al Layered Double Hydroxides Possessing Varying Layer Charge. Chem. Mater. 1996, 8, 1969–1977. [Google Scholar] [CrossRef]
- Cullity, B.D.; Stock, S.R. Elements of X-ray Diffraction; Prentice Hall: Upper Saddle River, NJ, USA, 2001; 388p. [Google Scholar]
- Wiig, H.; Kolmannskog, O.; Tenstad, O.; Bert, J.L. Effect of charge on interstitial distribution of albumin in rat dermis in vitro. J. Physiol. 2003, 550, 505–514. [Google Scholar] [CrossRef]
- Boclair, J.W.; Braterman, P.S. Layered Double Hydroxide Stability. 1. Relative Stabilities of Layered Double Hydroxides and Their Simple Counterparts. Chem. Mater. 1999, 11, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Lee, S.-B.; Choi, A.-J.; Oh, J.-M. Zingiber officinale Extract (ZOE) Incorporated with Layered Double Hydroxide Hybrid through Reconstruction to Preserve Antioxidant Activity of ZOE against Ultrasound and Microwave Irradiation. Nanomaterials 2019, 9, 1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, S.-Y.; Kim, H.-J.; Oh, J.-M. Synthetic mineral containing Sr, Ca, and Fe and its hybridization with soybean extract for synergetic bone regeneration. Mater. Chem. Phys. 2020, 255, 123620. [Google Scholar] [CrossRef]
- Thommes, M. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.M.M.; Tronto, J.; Briois, V.; Santilli, C.V. Thermal decomposition and recovery properties of ZnAl–CO3 layered double hydroxide for anionic dye adsorption: Insight into the aggregative nucleation and growth mechanism of the LDH memory effect. J. Mater. Chem. A 2017, 5, 9998–10009. [Google Scholar] [CrossRef]
- Abdel Moaty, S.A.; Mahmoud, R.K.; Mohamed, N.A.; Gaber, Y.; Farghali, A.A.; Abdel Wahed, M.S.M.; Younes, H.A. Synthesis and characterisation of LDH-type anionic nanomaterials for the effective removal of doxycycline from aqueous media. Water Environ. J. 2019, 34, 290–308. [Google Scholar] [CrossRef]
- El-Deeb, M.M.; El Rouby, W.M.A.; Abdelwahab, A.; Farghali, A.A. Effect of pore geometry on the electrocatalytic performance of nickel cobaltite/ carbon xerogel nanocomposite for methanol oxidation. Electrochim. Acta 2018, 259, 77–85. [Google Scholar] [CrossRef]
- Abo El-Reesh, G.Y.; Farghali, A.A.; Taha, M.; Mahmoud, R.K. Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal. Sci. Rep. 2020, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhu, B.; Yu, J.; Xu, Z. Effect of calcination on adsorption performance of Mg–Al layered double hydroxide prepared by a water-in-oil microemulsion method. RSC Adv. 2016, 6, 50128–50137. [Google Scholar] [CrossRef]
Sample | Al-NMR | N2 Adsorption-Desorption Isotherm | |||||
---|---|---|---|---|---|---|---|
Peak Position (ppm) | Peak Area Ratio (Td/Oh) | Adsorption Type | Hysteresis Classification | SBET (m2/g) | Pore Volume (cm3/g) | ||
Oh | Td | ||||||
AH-1 | 9.20 | - | - | III | - | 65.2 | 0.439 |
AO-1 | 9.40 | 74.3 | 0.145 | II | - | 176.6 | 0.801 |
AH-2 | 8.92 | - | - | III | H4 | 107.8 | 0.463 |
AO-2 | 10.1 | 73.4 | 0.589 | II | H2 | 224.3 | 0.899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-Y.; Kim, B.-K.; Kim, H.-J.; Oh, J.-M. Development of Mesopore Structure of Mixed Metal Oxide through Albumin-Templated Coprecipitation and Reconstruction of Layered Double Hydroxide. Nanomaterials 2021, 11, 620. https://doi.org/10.3390/nano11030620
Jung S-Y, Kim B-K, Kim H-J, Oh J-M. Development of Mesopore Structure of Mixed Metal Oxide through Albumin-Templated Coprecipitation and Reconstruction of Layered Double Hydroxide. Nanomaterials. 2021; 11(3):620. https://doi.org/10.3390/nano11030620
Chicago/Turabian StyleJung, Sang-Yong, Bo-Kyung Kim, Hyoung-Jun Kim, and Jae-Min Oh. 2021. "Development of Mesopore Structure of Mixed Metal Oxide through Albumin-Templated Coprecipitation and Reconstruction of Layered Double Hydroxide" Nanomaterials 11, no. 3: 620. https://doi.org/10.3390/nano11030620
APA StyleJung, S. -Y., Kim, B. -K., Kim, H. -J., & Oh, J. -M. (2021). Development of Mesopore Structure of Mixed Metal Oxide through Albumin-Templated Coprecipitation and Reconstruction of Layered Double Hydroxide. Nanomaterials, 11(3), 620. https://doi.org/10.3390/nano11030620