Efficiency of Magnetostatic Protection Using Nanostructured Permalloy Shielding Coatings Depending on Their Microstructure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- There is practically no ordered domain structure for the P0 and P1 modes. High values of magnetization (perpendicular to the coating plane in modulus) correspond to the central regions of grains, and low values correspond to grain boundaries.
- A two-domain structure (magnetization vectors up and down) is formed within grains with size 150–200 nm) for the P0.1 coating.
- One domain is formed in grains with a size of 100–150 nm with the magnetization vectors perpendicular to the coating plane (purple regions). Another oppositely directed domain is formed near but outside the grain to compensate (red regions). This is observed for coatings P0.1 and P0.01.
- The magnetization vectors of grains with a size less than 100 nm lie in the plane of the coating and are magnetized uniformly or not magnetized (light green color for coatings P0.1 and P0.01).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Panagopoulos, D.J.; Chrousos, G.P. Shielding methods and products against man-made Electromagnetic Fields: Protection versus risk. Sci. Total Environ. 2019, 667, 255–262. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; Kang, J.; Wang, Y. Electromagnetic Safety Evaluation and Protection Methods for a Wireless Charging System in an Electric Vehicle. IEEE Trans. Electromagn. Compat. 2019, 61, 1913–1925. [Google Scholar] [CrossRef]
- Shenkman, A.; Sonkin, N.; Kamensky, V. Active protection from electromagnetic field hazards of a high voltage power line. HAIT J. Sci. Eng. B 2005, 2, 254–265. [Google Scholar]
- Zhang, Q.; Liang, Q.; Zhang, Z.; Kang, Z.; Liao, Q.; Ding, Y.; Ma, M.; Gao, F.; Zhao, X.; Zhang, Y. Electromagnetic Shielding Hybrid Nanogenerator for Health Monitoring and Protection. Adv. Funct. Mater. 2018, 28, 1703801. [Google Scholar] [CrossRef]
- Vakhitov, M.G.; Klygach, D.S.; Kudryavtsev, O.A.; Zhikharev, M.V.; Knyazev, N.S.; Malkin, A.I.; Trukhanov, A.V. Highly efficient functional composites based on Al2O3 for combined electromagnetic and mechanical protection. Ceram. Int. 2020, 46, 17584–17590. [Google Scholar] [CrossRef]
- Ala, G.; Di, M.L. Silvestre A simulation model for electromagnetic transients in lightning protection systems. IEEE Trans. Electrom. 2002, 44, 539–554. [Google Scholar] [CrossRef]
- Moglie, F.; Micheli, D.; Laurenzi, S.; Marchetti, M.; Primiania, V.M. Electromagnetic shielding performance of carbon foams. Carbon 2012, 50, 1972–1980. [Google Scholar] [CrossRef]
- Unal, E.; Gokcen, A.; Kutlu, Y. Effective electromagnetic shielding. IEEE Microw. Mag. 2006, 7, 48–54. [Google Scholar] [CrossRef]
- Chung, D.D.L. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 2012, 50, 3342–3353. [Google Scholar] [CrossRef]
- Ishibashi, K.; Yoshioka, T.; Wakao, S.; Takahashi, Y.; Andjelic, Z.; Fujiwara, K. Improvement of Unified Boundary Integral Equation Method in Magnetostatic Shielding Analysis. IEEE Trans. Magn. 2014, 50, 7002404. [Google Scholar] [CrossRef]
- Grabchikov, S.S.; Trukhanov, A.V.; Trukhanova, S.V.; Kazakevich, I.S.; Solobaya, A.A.; Erofeenko, V.T.; Vasilenkov, N.A.; Volkova, O.S.; Shakine, A. Effectiveness of the magnetostatic shielding by the cylindrical shells. J. Magn. Magn. Mater. 2016, 398, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Reutov, Y.Y. Physical interpretation of magnetostatic shielding. Russ. J. Nondestruct. Test. 2000, 36, 117–126. [Google Scholar] [CrossRef]
- Blank, M.; Goodman, R. Comment: A biological guide for electromagnetic safety: The stress response. Bioelectromagnetics 2004, 25, 642–646. [Google Scholar] [CrossRef]
- Drossos, A.; Santomaa, V.; Kuster, N. The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300–3000 MHz. IEEE Trans. Microw. Theory Tech. 2000, 48, 1988–1995. [Google Scholar]
- Gandhi, O.P. Electromagnetic Fields: Human Safety Issues. Annu. Rev. Biomed. Eng. 2020, 4, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Singha, K.; Debnath, P.; Singha, M. Textiles in Electromagnetic Radiation Protection. J. Safety Eng. 2013, 2, 11–19. [Google Scholar]
- Graf, W.; Vance, E.F. Shielding effectiveness and electromagnetic protection. IEEE Trans. Electromagn. Compat. 1988, 30, 289–293. [Google Scholar] [CrossRef]
- Martens, L. Electromagnetic safety of children using wireless phones: A literature review. Bioelectromagnetics 2005, 26, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Trukhanov, A.V.; Grabchikov, S.S.; Solobai, A.A.; Tishkevich, D.I.; Trukhanov, S.V.; Trukhanova, E.L. AC and DC-shielding properties for the Ni80Fe20/Cu film structures. J. Magn. Magn. Mater. 2017, 443, 142–148. [Google Scholar] [CrossRef]
- Bavastro, D.; Canova, A.; Giaccone, L.; Manca, M. Numerical and experimental development of multilayer magnetic shields. Electr. Power Syst. Res. 2014, 116, 374–380. [Google Scholar] [CrossRef]
- Dmitrenko, V.V.; Nyunt, P.W.; Vlasik, K.F.; Grachev, V.M.; Grabchikov, S.S.; Muravyev-Smirnov, S.S.; Novikov, A.S.; Ulin, S.E.; Uteshev, Z.M.; Chernysheva, I.V.; et al. Electromagnetic shields based on multilayer film structures. Bull. Lebedev Phys. Inst. 2015, 42, 43–47. [Google Scholar] [CrossRef]
- Zubar, T.I.; Chizhik, S.A. Studying Nanotribological Properties of Functional Materials via Atomic Force Microscopy. J. Fricti. Wear 2019, 40, 201–206. [Google Scholar] [CrossRef]
- Zubar, T.I.; Trukhanov, A.V.; Vinnik, D.A. Influence of surface energy on ni-fe thin films formation process. Mater. Sci. Forum. 2019, 946, 228–234. [Google Scholar] [CrossRef]
- Mirgorod, Y.A.; Borshch, N.A.; Fedosyuk, V.M.; Yurkov, G.Y. Magnetic properties of nickel ferrite nanoparticles prepared using flotation extraction. Inorg. Mater. 2013, 49, 109–114. [Google Scholar] [CrossRef]
- Williams, J.M.; Blythe, H.J.; Fedosyuk, V.M. Investigation of electrodeposited granular CuFe alloyed films. J. Magn. Magn. Mater. 1995, 155, 355–357. [Google Scholar] [CrossRef]
- Vasilyev, E.A.; Tkachenko, T.M.; Fedosyuk, V.M.; Kasyutich, O.I.; Saiko, A.P. Investigation of perpendicular magnetic anisotropy in CoFeP/Cu multilayers by Mössbauer effect. J. Magn. Magn. Mater. 1992, 111, 34–38. [Google Scholar] [CrossRef]
- Zubar, T.; Fedosyuk, V.; Tishkevich, D.; Kanafyev, O.; Astapovich, K.; Kozlovskiy, A.; Vinnik, D.; Gudkova, S.; Kaniukov, E.; Sombra, A.S.B.; et al. The Effect of Heat Treatment on the Microstructure and Mechanical Properties of 2D Nanostructured Au/NiFe System. Nanomaterials 2020, 10, 1077. [Google Scholar] [CrossRef]
- Zavaleyev, V.; Walkowicz, J.; Kuznetsova, T.; Zubar, T. The dependence of the structure and mechanical properties of thin ta-C coatings deposited using electromagnetic Venetian blind plasma filter on their thickness. Thin Solid Films 2017, 638, 153–158. [Google Scholar] [CrossRef]
- Sharko, S.A.; Serokurova, A.I.; Zubar, T.I.; Trukhanov, S.V.; Tishkevich, D.I.; Samokhvalov, A.A.; Kozlovskiy, A.L.; Zdorovets, M.V.; Panina, L.V.; Fedosyuk, V.M.; et al. Multilayer spin-valve CoFeP/Cu nanowires with giant magnetoresistance. J. Alloys Compd. 2020, 846, 156474. [Google Scholar] [CrossRef]
- Zubar, T.I.; Fedosyuk, V.M.; Trukhanov, A.V.; Kovaleva, N.N.; Astapovich, K.A.; Vinnik, D.A.; Trukhanova, E.L.; Kozlovskiy, A.L.; Zdorovets, M.V.; Solobai, A.A.; et al. Control of Growth Mechanism of Electrodeposited Nanocrystalline NiFe Films. J. Electrochem. Soc. 2019, 166, 173–180. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, C.; Zhou, Y.; Maaz, K.; Yao, H.; Mo, D.; Lyu, S.; Duan, J.; Liu, J. Temperature- and Angle-Dependent Magnetic Properties of Ni Nanotube Arrays Fabricated by Electrodeposition in Polycarbonate Templates. Nanomaterials 2016, 6, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tishkevich, D.; Grabchikov, S.; Zubar, T.; Vasin, D.; Trukhanov, S.; Vorobjova, A.; Yakimchuk, D.; Kozlovskiy, A.; Zdorovets, M.; Giniyatova, S.; et al. Early-Stage Growth Mechanism and Synthesis Conditions-Dependent Morphology of Nanocrystalline Bi Films Electrodeposited from Perchlorate Electrolyte. Nanomaterials 2020, 10, 1245. [Google Scholar] [CrossRef]
- Salem, M.S.; Sergelius, P.; Zierold, R.; Moreno, J.M.M.; Görlitz, D.; Nielsch, K. Magnetic characterization of nickel-rich NiFe nanowires grown by pulsed electrodeposition. J. Mater. Chem. 2012, 22, 8549–8557. [Google Scholar] [CrossRef]
- Zubar, T.I.; Sharko, S.A.; Tishkevich, D.I.; Kovaleva, N.N.; Vinnik, D.A.; Gudkova, S.A.; Trukhanova, E.L.; Trofimov, E.A.; Chizhik, S.A.; Panina, L.V.; et al. Anomalies in Ni-Fe nanogranular films growth. J. Alloys Compd. 2018, 748, 970–978. [Google Scholar] [CrossRef]
- Zubar, T.; Trukhanov, A.; Vinnik, D.; Astapovich, K.; Tishkevich, D.; Kaniukov, E.; Kozlovskiy, A.; Zdorovets, M.; Trukhanov, S. Features of the growth processes and magnetic domain structure of nife nano-objects. J. Phys. Chem. C 2019, 123, 26957–26964. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A.; Lupicka, O.; Kuprin, A.S.; Tolmachova, G.N.; Ovcharenko, V.D.; Kolodiy, I.V.; Sawczak, M.; Kochmanska, A.E.; Kochmanski, P. Structure of CrON coatings formed in vacuum arc plasma fluxes. Surf. Coat. Tech. 2017, 309, 920–930. [Google Scholar] [CrossRef]
- Kuznetsova, T.; Zubar, T.; Chizhik, S.; Gilewicz, A.; Lupicka, O.; Warcholinski, B. Surface Microstructure of Mo(C)N Coatings Investigated by AFM. J. Mater. Eng. Perform. 2016, 25, 5450–5459. [Google Scholar] [CrossRef] [Green Version]
- Warcholinski, B.; Gilewicz, A.; Kuprin, A.S.; Tolmachova, G.N.; Ovcharenko, V.D.; Kuznetsova, T.A.; Zubar, T.I.; Khudoley, A.L.; Chizhik, S.A. Mechanical properties of Cr-O-N coatings deposited by cathodic arc evaporation. Vacuum 2018, 156, 97–107. [Google Scholar] [CrossRef]
- Kuznetsova, T.A.; Zubar, T.I.; Lapitskaya, V.A.; Sudzilouskaya, K.A.; Chizhik, S.A.; Didenko, A.L.; Svetlichnyi, V.M.; Vylegzhanina, M.E.; Kudryavtsev, V.V.; Sukhanova, T.E. Tribological properties investigation of the thermoplastic elastomers surface with the AFM lateral forces mode. IOP Conf. Ser. Mater. Sci. Eng. 2017, 256, 012022. [Google Scholar] [CrossRef] [Green Version]
- Warcholinski, B.; Gilewicz, A.; Kuznetsova, T.A.; Zubar, T.I.; Chizhik, S.A.; Abetkovskaia, S.O.; Lapitskaya, V.A. Mechanical properties of Mo(C)N coatings deposited using cathodic arc evaporation. Surf. Coat. Tech. 2017, 319, 117–128. [Google Scholar] [CrossRef]
- Warcholinski, B.; Kuznetsova, T.A.; Gilewicz, A.; Zubar, T.I.; Lapitskaya, V.A.; Chizhik, S.A.; Komarov, A.I.; Komarova, V.I.; Kuprin, A.S.; Ovcharenko, V.D.; et al. Structural and Mechanical Properties of Zr-Si-N Coatings Deposited by Arc Evaporation at Different Substrate Bias Voltages. J. Mater. Eng. Perform. 2018, 27, 3940–3950. [Google Scholar] [CrossRef] [Green Version]
- Landon, J.; Demeter, E.; İnoğlu, N.; Keturakis, C.; Wachs, I.E.; Vasić, R.; Frenkel, A.I.; Kitchin, J.R. Spectroscopic Characterization of Mixed Fe–Ni Oxide Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes. ACS Catal. 2012, 2, 1793–1801. [Google Scholar] [CrossRef]
- Torabinej, V.; Aliofkhazr, M.; Assar, S.; Allahyarz, M.H.; Rouhaghdam, A. Sabour Electrodeposition of Ni-Fe alloys, composites, and nano coatings—A review. J. Alloys Compd. 2017, 691, 841–859. [Google Scholar] [CrossRef]
- Tabakovic, I.; Gong, J.; Riemer, S.; Kautzky, S. Michael Influence of Surface Roughness and Current Efficiency on Composition Gradients of Thin NiFe Films Obtained by Electrodeposition. J. Electrochem. Soc. 2015, 162, D102. [Google Scholar] [CrossRef]
- Gonga, J.; Riemer, S.; Kautzky, M.; Tabakovi, I. Composition gradient, structure, stress, roughness and magnetic properties of 5–500 nm thin NiFe films obtained by electrodeposition. J. Magn. Magn. Mater. 2016, 398, 64–69. [Google Scholar] [CrossRef]
- Białostocka, M.A.; Klekotka, U.; Kalska-Szostko, B. The Effect of a Substrate Material on Composition Gradients of Fe-Ni Films obtained by Electrodeposition. Sci. Rep. 2020, 10, 1029. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, R.; Yow, H.K.; Ong, B.H.; Tan, K.B.; Anuar, K.; Wong, H.Y. Surface Morphology and Electrical Properties of Pulse Electrodeposition of NiFe Films on Copper Substrates in Ultrasonic Field. Int. J. Electrochem. Sci. 2011, 6, 3564–3579. [Google Scholar]
- Zubar, T.I.; Panina, L.V.; Kovaleva, N.N.; Sharko, S.A.; Tishkevich, D.I.; Vinnik, D.A.; Gudkova, S.A.; Trukhanova, E.L.; Trofimov, E.A.; Chizhik, S.A.; et al. Anomalies in growth of electrodeposited Ni–Fe nanogranular films. CrystEngComm 2018, 20, 2306–2315. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Stepin, S.G.; Szymczak, H.; Botez, C.E. Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys. Solid State 2008, 50, 886–893. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Fedotova, V.V.; Trukhanov, A.V.; Stepin, S.G.; Szymczak, H. Synthesis and structure of nanocrystalline La0.50Ba0.50MnO3. Crystallogr. Rep. 2008, 53, 1177–1180. [Google Scholar] [CrossRef]
- Zubar, T.I.; Fedosyuk, V.M.; Trukhanov, S.V.; Tishkevich, D.I.; Michels, D.; Lyakhov, D.; Trukhanov, A.V. Method of surface energy investigation by lateral AFM: Application to control growth mechanism of nanostructured NiFe films. Sci. Rep. 2020, 10, 14411. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Vinnik, D.A. Template Assisted Ni Nanowires Fabrication. Mater. Sci. Forum. 2019, 946, 235–241. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Vinnik, D.A. Formation and corrosion behavior of Nickel/Alumina nanocomposites. Solid State Phenom. 2020, 299, 100–106. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Trukhanov, A.V. Thermal stability of nano-crystalline nickel electrodeposited into porous alumina. Solid State Phenom. 2020, 299, 281–286. [Google Scholar] [CrossRef]
- Nesterov, V.N.; Shil’nikov, A.V. The computer analysis of dynamics of domain boundaries in ferroelectrics-Ferroelastics. Ferroelectrics 2002, 265, 153–159. [Google Scholar] [CrossRef]
- Demirdžić, I.; Perić, M. Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries International. Int. J. Numer. Methods Fluids 1990, 10, 771–790. [Google Scholar] [CrossRef]
- Nichipuruk, A.P.; Rozenfel’d, E.V.; Ogneva, M.S.; Stashkov, A.N.; Korolev, A.V. An experimental method for evaluating the critical fields of moving domain boundaries in plastically tension-deformed low-carbon wires. Russ. J. Nondestruct. 2014, 50, 566–573. [Google Scholar] [CrossRef]
- Prasolov, B.; Gorbatenko, V.; Safonova, I. Physical processes due to the movement of ferroelectric domain boundaries and mobile point defects. Ferroelectrics 1996, 186, 231–234. [Google Scholar] [CrossRef]
Shield Name | Current | Pulse Duration, s | Pause Duration, s | Full Deposition Time, Min | Effective Deposition Time, Min |
---|---|---|---|---|---|
P0 | direct | - | 0 | 85 | 85 |
P1 | pulsed | 1 | 1 | 170 | 85 |
P0.1 | pulsed | 0.1 | 0.1 | 170 | 85 |
P0.01 | pulsed | 0.01 | 0.01 | 170 | 85 |
Shielding Coating | CSR, nm | I(111)/I(200), % | a, Å | V, Å3 |
---|---|---|---|---|
P0 | 3.9 | 57 | 3.578 | 45.80 |
P1 | 3.3 | 84 | 3.570 | 45.50 |
P0.1 | 5.1 | 91 | 3.570 | 45.50 |
P0.01 | 5.0 | 95 | 3.567 | 45.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubar, T.; Grabchikov, S.; Kotelnikova, A.; Kaniukov, E.; Kutuzau, M.; Leistner, K.; Nielsch, K.; Vershinina, T.; Tishkevich, D.; Kanafyev, O.; et al. Efficiency of Magnetostatic Protection Using Nanostructured Permalloy Shielding Coatings Depending on Their Microstructure. Nanomaterials 2021, 11, 634. https://doi.org/10.3390/nano11030634
Zubar T, Grabchikov S, Kotelnikova A, Kaniukov E, Kutuzau M, Leistner K, Nielsch K, Vershinina T, Tishkevich D, Kanafyev O, et al. Efficiency of Magnetostatic Protection Using Nanostructured Permalloy Shielding Coatings Depending on Their Microstructure. Nanomaterials. 2021; 11(3):634. https://doi.org/10.3390/nano11030634
Chicago/Turabian StyleZubar, Tatiana, Sergey Grabchikov, Anna Kotelnikova, Egor Kaniukov, Maksim Kutuzau, Karin Leistner, Kornelius Nielsch, Tatiana Vershinina, Daria Tishkevich, Oleg Kanafyev, and et al. 2021. "Efficiency of Magnetostatic Protection Using Nanostructured Permalloy Shielding Coatings Depending on Their Microstructure" Nanomaterials 11, no. 3: 634. https://doi.org/10.3390/nano11030634
APA StyleZubar, T., Grabchikov, S., Kotelnikova, A., Kaniukov, E., Kutuzau, M., Leistner, K., Nielsch, K., Vershinina, T., Tishkevich, D., Kanafyev, O., Kozlovskiy, A., Zdorovets, M., Fedosyuk, V., & Trukhanov, A. (2021). Efficiency of Magnetostatic Protection Using Nanostructured Permalloy Shielding Coatings Depending on Their Microstructure. Nanomaterials, 11(3), 634. https://doi.org/10.3390/nano11030634