Reduced Graphene Oxide Inserted into PEDOT:PSS Layer to Enhance the Electrical Behaviour of Light-Emitting Diodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthetic Pathway of PEDOT:PSS|rGo Dispersions
2.4. Synthesis of CdS Nanocrystals Powder
2.5. Hybrid LEDs Fabrication
3. Results
3.1. CdS NCs Characterization
3.2. Synthesis and Characterization of the Hybrid Solution
3.3. Hybrid LEDs with rGO
3.4. Hybrid LEDs with rGO and CdS NCs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmadian-Yazdi, M.; Eslamian, M. Toward scale-up of perovskite solar cells: Annealing-free perovskite layer by low-cost ultrasonic substrate vibration of wet films. Mater. Today Commun. 2018, 15, 151–159. [Google Scholar] [CrossRef]
- O’Riordan, A.; O’Connor, E.; Moynihan, S.; Llinares, X.; van Deun, R.; Fias, P.; Nockemann, P.; Binnemans, K.; Redmond, G. Narrow bandwidth red electroluminescence from solution-processed lanthanide-doped polymer thin films. Thin Solid Films 2005, 491, 264–269. [Google Scholar] [CrossRef]
- Han, J.; Kim, D.; Choi, K. Microcavity effect using nanoparticles to enhance the efficiency of organic light-emitting diodes. Opt. Express 2015, 23, 19863–19873. [Google Scholar] [CrossRef]
- Novoselov, S.; Geim, A.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakavelakis, G.; Maksudov, T.; Konios, D.; Paradisanos, I.; Kioseoglou, G.; Stratakis, E.; Kymakis, E. Efficient and Highly Air Stable Planar Inverted Perovskite Solar Cells with Reduced Graphene Oxide Doped PCBM Electron Transporting Layer. Adv. Energy Mater. 2012, 7, 1602120. [Google Scholar] [CrossRef]
- Wang, Q.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.; Strano, M. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2010, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Liu, Y.; Baek, J.; Dai, L. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 2010, 4, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.; Song, Y.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.; Ghosh, S.; Bao, W.; Calizo, I.; Tewerdebrhan, D.; Miao, F.; Lau, C. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Morozov, S.; Novoselov, K.; Katsnelson, M.; Schedin, F.; Elias, D.; Jaszezak, J.; Geim, A. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.; Blake, P.; Grigorenko, A.; Novoselov, K.; Booth, T.; Stauber, T.; Peres, N.; Geim, A. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Zhang, M.; Wang, X.; Yang, F.; Meng, X. Recent progress in organic-inorganic hybrid solar cells. J. Mater. Chem. A 2013, 1, 8694. [Google Scholar] [CrossRef]
- Rodríguez-Mas, F.; Ferrer, J.C.; Alonso, J.L.; Fernández de Ávila, S. Expanded electroluminescence in high load CdS nanocrystals PVK-based LEDs. Nanomaterials 2019, 9, 1212. [Google Scholar] [CrossRef] [Green Version]
- Zang, Y.; Lei, J.; Ju, H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens. Biolectron. 2017, 96, 8–16. [Google Scholar] [CrossRef]
- Vitukhnovskii, A.; Vaschenko, A.; Bychkovskii, D.; Dirin, D.; Tananaev, P.; Vakshtein, M.; Korzhonov, D. Photo-and electroluminescence from semiconductor colloidal quantum dots in organic matrices: QD-OLED. Semiconductors 2013, 47, 1567–1569. [Google Scholar] [CrossRef]
- Seo, D.B.; Kim, S.; Gudala, R.; Challa, K.K.; Hong, K.; Kim, E.T. Synthesis and organic solar cell application of RNA-nucleobase-complexed CdS nanowires. Sol. Energy 2020, 206, 287–293. [Google Scholar] [CrossRef]
- Ratnesh, R.K. Hot injection blended tuneable CdS quantum dots for production of blue LED and a selective detection of Cu2+ ions in aqueous medium. Opt. Laser Technol. 2019, 116, 103–111. [Google Scholar] [CrossRef]
- Gogoi, K.K.; Chowdhurya, A. Performance improvement of organic resistive memories by exploiting synergistic layered nanohybrid dispersed polymer composites. J. Appl. Phys. 2020, 126, 065501. [Google Scholar] [CrossRef]
- Gogoi, K.K.; Das, R.; Paul, T.; Ghosh, S.; Chowdhury, A. Tunning of bipolar resistive switching and memory characteristics of cadmium sulphide nanorods embedded in PMMA matrix. Mater. Res. Express 2019, 6, 115107. [Google Scholar] [CrossRef]
- Das, R.C.; Gogoi, K.K.; Das, N.S.; Chowdhury, A. Optimization of quantum yield of highly luminescent graphene oxide quantum dots and their application in resistive memory devices. Semicond. Sci. Technol. 2019, 34, 125016. [Google Scholar] [CrossRef]
- Ferrer, J.C.; Salinas-Castillo, A.; Alonso, J.L.; Fernández de Ávila, S.; Mallavia, R. Direct synthesis of PbS nanocrystal capped with 4-fluorothiohenol in semiconducting polymer. Mater. Chem. Phys. 2010, 122, 459–462. [Google Scholar] [CrossRef]
- Swain, B.; Shin, D.; Joo, S.Y.; Ahn, N.K.; Lee, C.G.; Yoon, J.H. Synthesis of submicron silver powder from scrap low-temperature co-fired ceramic an e-waste: Understanding the leaching kinetics and wet chemistry. Chemosphere 2018, 194, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wu, C.P.; Zhang, N.; Zhu, X.N.; Ma, X.Q.; Zhigilei, L.V. Experimental and computational study of the effect of 1 atm background gas on nanoparticle generation in femtosecond laser ablation of metals. Appl. Surf. Sci. 2018, 435, 1114–1119. [Google Scholar] [CrossRef]
- Herron, N.; Wang, Y.; Eckert, H. Synthesis and Characterization of Surface-Capped, Size-Quantized CdS Clusters. Chemical Control of Cluster Size. J. Am. Chem. Soc. 1990, 112, 1322–1326. [Google Scholar] [CrossRef]
- Holze, R. The adsorption of thiophenol on gold—A spectroelectrochemical study. Phys. Chem. Phys. 2015, 17, 21364–21372. [Google Scholar] [CrossRef] [Green Version]
- Osuwa, J.C.; Oriaku, C.I.; Kalu, I.A. Variation of optical band gap with post deposition annealing in CdS/PVA thin films. Chalcogenide Lett. 2009, 6, 433–436. [Google Scholar]
- Brus, L. Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory. J. Phys. Chem. 1986, 90, 2555–2560. [Google Scholar] [CrossRef]
- Banerjee, R.; Jayakrishnan, R.; Ayyub, P. Effect of the size-induced structural transformation on the band gap in CdS nanoparticles. J. Phys. Condens. Matter 2000, 12, 10647. [Google Scholar] [CrossRef]
- Wang, S.H.; Yang, S.H.; Yang, C.L.; Li, Z.Q.; Wang, J.N.; Ge, W.K. Poly(N-vinylcarbazole) (PVK) Photoconductivity enhancement induced by doping with CdS nanocrystals through chemical hybridization. J. Phys. Chem. 2000, 104, 11853. [Google Scholar] [CrossRef]
- Masala, S.; Bizarro, V.; Re, M.; Nenna, G.; Villani, F.; Minarini, C.; Di Luccio, T. Photoluminescence quenching and conductivity enhancement of PVK induced by CdS quantum dots. Phys. E Low Dimens Syst. Nanostruct. 2012, 44, 1272–1277. [Google Scholar] [CrossRef]
- Marsden, A.J.; Papageorgiou, D.G.; Vallés, C.; Liscio, A.; Palermo, V.; Bissett, M.A.; Young, R.J.; Kinloch, I.A. Electrical percolation in graphene-polymer composites. 2D Mater. 2018, 5, 032003. [Google Scholar] [CrossRef] [Green Version]
- Madsuha, A.F.; Pham, C.V.; Eck, M.; Neukom, M.; Krueger, M. Improved Hole Injection in Bulk Heterojunction (BHJ) Hybrid Solar Cells by Applying a Thermally Reduced Graphene Oxide Buffer Layer. J. Nanomater. 2019, 6095863. [Google Scholar] [CrossRef]
- Liu, Y.F.; Feng, J.; Zhang, Y.F.; Cui, H.F.; Yin, D.; Bi, Y.G.; Song, J.F.; Chen, Q.D.; Sun, H.B. Improved efficiency of indium-tin-oxide-free organic light-emitting devices using PEDOT:PSS/graphene oxide composite anode. Org. Electron. 2015, 26, 81–85. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Wang, Z.L.; Han, W.H.; Liu, Q.M.; Lu, S.Q. High performance silicon-organic hybrid solar cells via improving conductivity of PEDOT:PSS with reduced graphene oxide. Appl. Surf. Sci. 2017, 407, 398–404. [Google Scholar] [CrossRef]
- Ye, T.; Chen, Y.; Ma, D. Electroluminescence of poly (N-vinylcarbazole) films: Fluorescence, phosphorescence and electromers. Phys. Chem. Chem. Phys. 2010, 12, 15410–15413. [Google Scholar] [CrossRef]
Solution | PEDOT:PSS (mL) | rGO (mL) |
---|---|---|
PEDOT:PSS | 1.000 | 0.000 |
PEDOT:PSS|rGO [30:1] | 1.000 | 0.033 |
PEDOT:PSS|rGO [15:1] | 1.000 | 0.067 |
PEDOT:PSS|rGO [5:1] | 1.000 | 0.200 |
NCs | Absorption Edge (eV) | Emission Peak (nm) | Size (Brus) (nm) | Size (TEM) (nm) | |
---|---|---|---|---|---|
CdS NCs | 3.07 | 404 | 576 | 3.11 | 3.20 ± 0.06 nm |
Hybrid LEDs | Gaussian Emission Peaks (nm) | ||
---|---|---|---|
PEDOT:PSS + PVK | 428 | 495 | 596 |
PEDOT:PSS|rGO [30:1] + PVK | 427 | 512 | 602 |
PEDOT:PSS|rGO [15:1] + PVK | 425 | 506 | 594 |
PEDOT:PSS|rGO [5:1] + PVK | 425 | 505 | 597 |
Hybrid LEDs | Gaussian Emission Peaks (nm) | ||
---|---|---|---|
PEDOT:PSS + PVK | 428 | 495 | 596 |
PEDOT:PSS + PVK:CdS [2:1] | 431 | 517 | 620 |
PEDOT:PSS|rGO [30:1] + PVK:CdS [2:1] | 417 | 527 | 611 |
PEDOT:PSS|rGO [15:1] + PVK:CdS [2:1] | 422 | 526 | 613 |
PEDOT:PSS|rGO [5:1] + PVK:CdS [2:1] | 423 | 521 | 611 |
Hybrid LEDs | CIE 1931 Coordinates |
---|---|
PEDOT:PSS + PVK | (0.28, 0.28) |
PEDOT:PSS|rGO [30:1] + PVK | (0.28, 0.29) |
PEDOT:PSS|rGO [15:1] + PVK | (0.27, 0.27) |
PEDOT:PSS|rGO [5:1] + PVK | (0.28, 0.27) |
PEDOT:PSS|rGO [30:1] + PVK:CdS [2:1] | (0.36, 0.37) |
PEDOT:PSS|rGO [15:1] + PVK:CdS [2:1] | (0.34, 0.32) |
PEDOT:PSS|rGO [5:1] + PVK:CdS [2:1] | (0.36, 0.34) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Mas, F.; Ferrer, J.C.; Alonso, J.L.; Fernández de Ávila, S.; Valiente, D. Reduced Graphene Oxide Inserted into PEDOT:PSS Layer to Enhance the Electrical Behaviour of Light-Emitting Diodes. Nanomaterials 2021, 11, 645. https://doi.org/10.3390/nano11030645
Rodríguez-Mas F, Ferrer JC, Alonso JL, Fernández de Ávila S, Valiente D. Reduced Graphene Oxide Inserted into PEDOT:PSS Layer to Enhance the Electrical Behaviour of Light-Emitting Diodes. Nanomaterials. 2021; 11(3):645. https://doi.org/10.3390/nano11030645
Chicago/Turabian StyleRodríguez-Mas, Fernando, Juan Carlos Ferrer, José Luis Alonso, Susana Fernández de Ávila, and David Valiente. 2021. "Reduced Graphene Oxide Inserted into PEDOT:PSS Layer to Enhance the Electrical Behaviour of Light-Emitting Diodes" Nanomaterials 11, no. 3: 645. https://doi.org/10.3390/nano11030645
APA StyleRodríguez-Mas, F., Ferrer, J. C., Alonso, J. L., Fernández de Ávila, S., & Valiente, D. (2021). Reduced Graphene Oxide Inserted into PEDOT:PSS Layer to Enhance the Electrical Behaviour of Light-Emitting Diodes. Nanomaterials, 11(3), 645. https://doi.org/10.3390/nano11030645