Heat Transfer Enhancement of Small-Diameter Two-Phase Closed Thermosyphon Using Cellulose Nanofiber and Hydrophilic Surface Modification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cellulose Nanofiber (CNF)
2.2. Hydrophilic Surface Modification
2.3. Experimental Apparatus
3. Result and Discussion
3.1. Geyser Phenomenon
3.2. Hydrophilic Surface Modification
3.3. CNF and Hydrophilic Surface Modification
4. Conclusions
- (1)
- When compared to the water and bare surface case, it was revealed that the CHF improved by at least 14.3% at all FRs (0.25, 0.5, and 0.75).
- (2)
- The BHTC improved by up to 348.5%, whereas it improved by 205.33%, 134.69%, and 93.55% on average at FRs of 0.25, 0.5, and 0.75, respectively. The total thermal resistance showed average reduction rates of 47.51%, 36.69%, and 22.56% at FRs of 0.25, 0.5, and 0.75, respectively.
- (3)
- In addition, because the aggregation and sedimentation of CNFs did not occur even after repeated experiments over a significant time period, it can be concluded that CNF mitigated the stability problem of the existing inorganic nanoparticles.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
A | |
Co | Confinement number |
D | |
g | |
I | |
L | |
p | Pressure transducer |
Q | |
R | |
Re | Reynolds number |
T | |
V | |
Greek symbols | |
Subscript | |
c | Condenser section |
copper | Copper |
e | Evaporator section |
i | Inner |
in | Input |
l | Liquid |
sat | Saturation |
tot | Total |
v | Vapor |
Abbreviations | |
BHTC | Boiling heat transfer coefficient |
CHF | Critical heat flux |
CNF | Cellulose nanofiber |
DI | De-ionized |
FR | Filling ratio |
TPCT | Two-phase closed thermosyphon |
References
- Imura, H.; Sasaguchi, K.; Kozai, H.; Numata, S. Critical heat flux in a closed two-phase thermosyphon. Int. J. Heat Mass Transf. 1983, 26, 1181–1188. [Google Scholar] [CrossRef]
- Smith, K.; Kempers, R.; Robinson, A. Confinement and vapour production rate influences in closed two-phase reflux thermosyphons Part A: Flow regimes. Int. J. Heat Mass Transf. 2018, 119, 907–921. [Google Scholar] [CrossRef]
- Smith, K.; Robinson, A.; Kempers, R. Confinement and vapour production rate influences in closed two-phase reflux thermosyphons Part B: Heat transfer. Int. J. Heat Mass Transf. 2018, 120, 1241–1254. [Google Scholar] [CrossRef]
- Robinson, A.J.; Smith, K.; Hughes, T.; Filippeschi, S. Heat and mass transfer for a small diameter thermosyphon with low fill ratio. Int. J. Thermofluids 2020, 1–2, 100010. [Google Scholar] [CrossRef]
- Emami, M.R.S.; Noie, S.H.; Khoshnoodi, M.; Mosavian, M.T.H.; Kianifar, A. Investigation of geyser boiling phenomenon in a two-phase closed thermosiphon. Heat Transf. Eng. 2015, 30, 408–415. [Google Scholar] [CrossRef]
- Pabón, N.Y.L.; Mera, J.P.F.; Vieira, G.S.C.; Mantelli, M.B.H. Visualization and experimental analysis of Gey-ser boiling phenomena in two-phase thermosyphons. Int. J. Heat Mass Transf. 2019, 141, 876–890. [Google Scholar] [CrossRef]
- Khazaee, I.; Hosseini, R.; Noie, S.H. Experimental investigation of effective parameters and correlation of gey-ser boiling in a two-phase closed thermosyphon. Appl. Therm. Eng. 2010, 30, 406–412. [Google Scholar] [CrossRef]
- Faghri, A. Review and Advances in Heat Pipe Science and Technology. J. Heat Transf. 2012, 134, 123001. [Google Scholar] [CrossRef]
- Choi, D.; Lee, K.-Y. Experimental Study on Confinement Effect of Two-Phase Closed Thermosyphon and Heat Transfer Enhancement using Cellulose Nanofluid. Appl. Therm. Eng. 2020, 183, 116247. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Xiong, J.-G.; Bao, R. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface. Int. J. Multiph. Flow 2007, 33, 1284–1295. [Google Scholar] [CrossRef]
- Truong, B.H. Determination of pool boiling critical heat flux enhancement in nanifluids. Bachelor’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2007. [Google Scholar]
- You, S.M.; Kim, J.H.; Kim, K.H. Effect of nanoparticles on critical heat flux of water in pool boiling heat trans-fer. Appl. Phys. Lett. 2003, 83, 3374. [Google Scholar] [CrossRef]
- Vassallo, P.; Kumar, R.; D’Amico, S. Pool boiling heat transfer experiments in silica–water nano-fluids. Int. J. Heat Mass Transf. 2004, 47, 407–411. [Google Scholar] [CrossRef]
- Bang, I.C.; Chang, S.H. Boiling heat transfer performance and phenomena of Al2O3—Water nano-fluids from a plain surface in a pool. Int. J. Heat Mass Transf. 2005, 48, 2407–2419. [Google Scholar] [CrossRef]
- Das, S.K.; Putra, N.; Roetzel, W. Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf. 2003, 46, 851–862. [Google Scholar] [CrossRef]
- Suriyawong, A.; Wongwises, S. Nucleate pool boiling heat transfer characteristics of TiO2–water nanofluids at very low concentrations. Exp. Therm. Fluid Sci. 2010, 34, 992–999. [Google Scholar] [CrossRef]
- Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules 2007, 8, 2485–2491. [Google Scholar] [CrossRef]
- Rahimi, M.; Asgary, K.; Jesri, S. Thermal characteristics of a resurfaced condenser and evaporator closed two-phase thermosyphon. Int. Commun. Heat Mass Transf. 2010, 37, 703–710. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiang, P.; Zhou, Y.; Zhang, Y.; Zhang, Y. Heat transfer characteristics of two-phase closed thermosy-phons modified with inner surfaces of various wettabilities. Int. Commun. Heat Mass Transf. 2019, 103, 100–109. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, J.S.; Shin, D.H.; Seo, J.H.; You, S.M.; Lee, J. Effects of hydrophobic and superhydrophobic coatings of a condenser on the thermal performance of a two-phase closed thermosyphon. Int. J. Heat Mass Transf. 2019, 144, 118706. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, D.H.; Kim, J.S.; You, S.M.; Lee, J. Effect of sintered microporous coating at the evaporator on the thermal performance of a two-phase closed thermosyphon. Int. J. Heat Mass Transf. 2019, 131, 1064–1074. [Google Scholar] [CrossRef]
- Keller, A.A.; Wang, H.; Zhou, D.; Lenihan, H.S.; Cherr, G.; Cardinale, B.J.; Miller, R.; Ji, Z. Stability and aggrega-tion of metal oxide nanoparticles in natural aqueous matrices. Environ. Sci. Technol. 2010, 44, 1962–1967. [Google Scholar] [CrossRef]
- Prasher, R.; Evans, W.; Meakin, P.; Fish, J.; Phelan, P.; Keblinskia, P. Effect of aggregation on thermal conduction in colloidal nanofluids. Appl. Phys. Lett. 2006, 89, 143119. [Google Scholar] [CrossRef] [Green Version]
- Coleman, H.W.; Steele, W.G. Experimentation and Uncertainty Analysis for Engineers; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Rohsenow, W.M. A method of correlating heat transfer data for surface boiling of liquids. Trans. ASME 1952, 74, 969–976. [Google Scholar]
- Noie, S. Heat transfer characteristics of a two-phase closed thermosyphon. Appl. Therm. Eng. 2005, 25, 495–506. [Google Scholar] [CrossRef]
- Baojin, Q.; Li, Z.; Hong, X.; Yan, S. Heat transfer characteristics of titanium_water two-phase closed thermosy-phon. Energy Convers. Manag. 2009, 50, 2174–2179. [Google Scholar] [CrossRef]
Property | CNF (0.5 w.t%, 25 °C) | De-Ionized Water (25 °C) |
---|---|---|
pH | 7.42 | 7 |
] | 1.658 | 0.0005 |
] | 0.9984 | 0.9970 |
0.0089 | 0.00089 | |
] | 1–20 | - |
] | −92.83 | −30~−40 |
Measurement | Device | Uncertainty | Range |
---|---|---|---|
Wall Temperature | Thermocouple (K-type, Omega) | ±0.15 °C | 0–700 °C |
Pressure | Pressure transducer (PSHJ1000TCTJ, Sensys) | ±0.15% | 0–100 (Abs.) |
Voltage & Current | Power supply (N8953A, Keysight) | ±0.2% | 0–200 , 0–75 |
Coolant Temperature | Chiller (GR-C-00050A, Busung) | ±0.15 °C | −10–30 °C |
Coolant Flow Rate | Flowmeter (Yuyu inst.) | ±1% | 0–0.7 |
Thermal Power | Copper heater (Woori heater) | ±0.2% | 0–800 |
Result | Symbol | Uncertainty |
---|---|---|
0.28% | ||
] | 4.68–14.46% | |
] | 2.39–10.67% |
200–500 W | Le/Lc (mm) | Di (mm) | Co | FR | BHTC (W/m^2K) |
---|---|---|---|---|---|
This study with water and bare tube | 300/350 | 11 | 0.245 | 0.25 | 893–1114 |
0.5 | 746–1055 | ||||
0.75 | 649–1036 | ||||
This study with CNF and surface modification | 0.25 | 2581–4008 | |||
0.5 | 1950–2322 | ||||
0.75 | 1266–2066 | ||||
Noie [26] | 314/380 | 25 | 0.108 | 0.3 | 880–2250 |
0.6 | 1075–3210 | ||||
Baojin et al. [27] | 350/350 | 22.5 | 0.120 | 0.36 | 3650–4710 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, D.; Jun, G.; Hwang, W.; Lee, K.-Y. Heat Transfer Enhancement of Small-Diameter Two-Phase Closed Thermosyphon Using Cellulose Nanofiber and Hydrophilic Surface Modification. Nanomaterials 2021, 11, 647. https://doi.org/10.3390/nano11030647
Choi D, Jun G, Hwang W, Lee K-Y. Heat Transfer Enhancement of Small-Diameter Two-Phase Closed Thermosyphon Using Cellulose Nanofiber and Hydrophilic Surface Modification. Nanomaterials. 2021; 11(3):647. https://doi.org/10.3390/nano11030647
Chicago/Turabian StyleChoi, Dongnyeok, Gyosik Jun, Woonbong Hwang, and Kwon-Yeong Lee. 2021. "Heat Transfer Enhancement of Small-Diameter Two-Phase Closed Thermosyphon Using Cellulose Nanofiber and Hydrophilic Surface Modification" Nanomaterials 11, no. 3: 647. https://doi.org/10.3390/nano11030647
APA StyleChoi, D., Jun, G., Hwang, W., & Lee, K. -Y. (2021). Heat Transfer Enhancement of Small-Diameter Two-Phase Closed Thermosyphon Using Cellulose Nanofiber and Hydrophilic Surface Modification. Nanomaterials, 11(3), 647. https://doi.org/10.3390/nano11030647