Wound Healing Composite Materials of Bacterial Cellulose and Zinc Oxide Nanoparticles with Immobilized Betulin Diphosphate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of BC
2.2. Betulin-3,28-diphosphate
2.3. Zinc Oxide Nanoparticles
2.4. Oleogel ZnO NPs-BDP
2.5. Preparation of BC-ZnO NPs-BDP Composites and Their Properties
2.6. FTIR Analysis
2.7. UV Analysis
2.8. RP-HPLC Analysis
2.9. Powder X-ray Diffraction Analysis
2.10. Photoluminescence Analysis
2.11. Elemental Analysis
2.12. 13C Nuclear Magnetic Resonance (NMR) Spectroscopy
2.13. SEM Analysis
2.14. Specific Surface Areas Analysis
2.15. Chemical Composition of BC
2.16. Surface Charge Measurements
2.17. Biological Activity
2.17.1. Modeling of Thermal Burns in Animals
2.17.2. Wound Area Measurement
2.17.3. Morpho-histology Research
2.17.4. Microcirculation Research
2.17.5. Biological Analysis In Vitro
2.17.6. Cytotoxicity Tests
2.18. Statistical Analysis
3. Results and Discussion
3.1. Optimization of the Synthesis of ZnO NPs and Development of a Method for Designing Nanocomposites of BC and ZnO NPs
3.2. Zinc Ions Release from BC-ZnO NPs-BDP Nanocomposite Films
3.3. Cell Viability under the Action of Wound Dressings and Their Biodegradability
3.4. Study of the Healing of a Thermal Burn Wound in an Experiment on Rats Treated with Agents Based on Bacterial Cellulose
- BC-ZnO NPs group: treatment with BC films with immobilized ZnO NPs (5%) (Figure S7).
- BC-BDP group: treatment with BC films with immobilized BDP (0.01%) (Figure S8).
- BC-ZnO NPs-BDP group: treatment with BC films with immobilized ZnO NPs (5%) and containing betulin diphosphate (1.5%) (Figure S9).
- Control group: treatment with ZnO NPs-BDP oleogels (Figure S10).
- At the initial stage, the healing of a thermal burn with the use of composite materials based on BC: BC-ZnO NPs, BC-BDP, BC-ZnO NPs-BDP, and ZnO NPs-BDP-B oleogel is similar. This process is characterized by destructive changes in the skin with signs of complications of the reparative process, which is manifested by uneven maturation of granulation tissue with the presence of foci of inflammation and secondary stromal necrosis and signs of impaired proliferation, differentiation, and keratinization of the epidermis in the form of focal hyperplasia of the epidermis with symptoms of acanthosis and hyperkeratosis.
- The use of ZnO NPs-BDP-B oleogel, as a rule, limits the destructive changes caused by thermal damage within the epidermis and dermis. The use of ZnO NPs-BDP-B oleogel promotes granulation tissue formation, its maturation, and epithelialization. Simultaneously, the reparative process during treatment with oleogel proceeds to a lesser extent than the BC-ZnO NPs, BC-BDP and BC-ZnO NPs-BDP animal groups, complicated by the secondary stromal necrosis and inflammation foci of the regenerate and adjacent tissues.
- Reparative processes when using BC composite materials proceed more intensively than using oleogel due to the destructive process’s limitation within the epidermis and dermis. Besides, the purulent-necrotic complications are absent in the process of defect healing by BC composites. In this case, the reparative process ensures the earlier appearance and uniform maturation of young connective tissue with the normalization of proliferation and differentiation of epidermal cells.
3.5. Investigation of Microhemocirculation in the Skin of Rats after a Burn and during Treatment with Agents Containing Bacterial Cellulose
3.6. Antioxidant Properties of BC-ZnO NPs-BDP Nanocomposites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beekmann, U.; Zahel, P.; Karl, B.; Schmölz, L.; Börner, F.; Gerstmeier, J.; Werz, O.; Lorkowski, S.; Wiegand, C.; Fischer, D.; et al. Modified Bacterial Cellulose Dressings to Treat Inflammatory Wounds. Nanomaterials 2020, 10, 2508. [Google Scholar] [CrossRef]
- Drąg-Zalesińska, M.; Rembiałkowska, N.; Borska, S.; Saczko, J.; Drąg, M.; Poręba, M.; Kulbacka, J. A New Betulin Derivative Stimulates the Synthesis of Collagen in Human Fibroblasts Stronger than its Precursor. In Vivo 2019, 33, 1087–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnikova, N.; Vorobyova, O.; Balakireva, A.; Malygina, D.; Solovyeva, A.; Belyaeva, K.; Orekhov, D.; Knyazev, A. The New Pharmaceutical Compositions of Zinc Oxide Nanoparticles and Triterpenoids for the Burn Treatment. Pharmaceuticals 2020, 13, 207. [Google Scholar] [CrossRef]
- Vorobyova, O.; Deryabina, O.; Malygina, D.; Plotnikova, N.; Solovyeva, A.; Belyaeva, K.; Melnikova, N. Betulin-3,28-diphosphate as a Component of Combination Cytostatic Drugs for the Treatment of Ehrlich Ascites Carcinoma In Vitro and In Vivo Experiments. Sci. Pharm. 2018, 86, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, A.; Khan, R.; Ul-Islam, M.; Khan, T.; Wahid, F. Bacterial cellulose-zinc oxide nanocomposites as a novel dressing system for burn wounds. Carbohydr. Polym. 2017, 164, 214–221. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, J.; Lin, H.; Ren, X.; Tian, H.; Liang, Y.; Wang, W.; Wang, Y.; Yin, M.; Huang, Y.; et al. In situ Fabrication of Nano ZnO/BCM Biocomposite Based on MA Modified Bacterial Cellulose Membrane for Antibacterial and Wound Healing. Int. J. Nanomed. 2020, 15, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dincă, V.; Mocanu, A.; Isopencu, G.; Busuioc, C.; Brajnicov, S.; Vlad, A.; Icriverzi, M.; Roseanu, A.; Dinescu, M.; Stroescu, M.; et al. Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties. Arab. J. Chem. 2020, 13, 3521–3533. [Google Scholar] [CrossRef]
- Pirsa, S.; Shamusi, T.; Kia, E.M. Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles. J. Appl. Polym. Sci. 2018, 135, 46617. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, W.; Chen, S.; Zheng, Y.; Zhou, B.; Wang, H. High photocatalytic properties of zinc oxide nanoparticles with amidoximated bacterial cellulose nanofibers as templates. J. Polym. Sci. Polym. Symp. 2014, 32, 169–176. [Google Scholar] [CrossRef]
- Mocanu, A.; Isopencu, G.; Busuioc, C.; Popa, O.-M.; Dietrich, P.; Socaciu-Siebert, L. Bacterial cellulose films with ZnO nanoparticles and propolis extracts: Synergistic antimicrobial effect. Sci. Rep. 2019, 9, 17687. [Google Scholar] [CrossRef]
- Katepetch, C.; Rujiravanit, R.; Tamura, H. Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis. Cellulose 2013, 201, 1275–1292. [Google Scholar] [CrossRef]
- Zhao, S.-W.; Guo, C.-R.; Hu, Y.-Z.; Guo, Y.-R.; Pan, Q.-J. The preparation and antibacterial activity of cellulose/ZnO composite: A review. Open Chem. 2018, 16, 9–20. [Google Scholar] [CrossRef]
- Wasim, M.; Khan, M.R.; Mushtaq, M.; Naeem, A.; Han, M.; Wei, Q. Surface Modification of Bacterial Cellulose by Copper and Zinc Oxide Sputter Coating for UV-Resistance/Antistatic/Antibacterial Characteristics. Coatings 2020, 10, 364. [Google Scholar] [CrossRef] [Green Version]
- Aritonang, H.F.; Kamea, O.E.; Koleangan, H.; Wuntu, A.D. Biotemplated synthesis of Ag-ZnO nanoparticles/bacterial cellulose nanocomposites for photocatalysis application. Polym.-Plast. Technol. Mater. 2020, 1–8. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Khattak, W.A.; Ullah, M.W.; Khan, S.; Park, J.K. Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 2013, 21, 433–447. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Holmes, A.M.; Song, Z.; Moghimi, H.R.; Roberts, M.S. Relative Penetration of Zinc Oxide and Zinc Ions into Human Skin after Application of Different Zinc Oxide Formulations. ACS Nano 2016, 10, 1810–1819. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Carmona, M.; Gun’ko, Y.; Vallet-Regí, M. ZnO Nanostructures for Drug Delivery and Theranostic Applications. Nanomaterials 2018, 8, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox. Signal. 2008, 10, 179–206. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-J. Observation and identification of lactate dehydrogenase anomaly in a postburn patient. Postgrad. Med. J. 2004, 80, 481–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, R.; Nazam, N.; Khan, A.; Alam, M. Significance of Serum Lactate Dehydrogenase and its Isoenzymes during Post-Burn Follow-Up. J. Med. Biochem. 2009, 28, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Li, R.; Yan, L.-J. Roles of Pyruvate, NADH, and Mitochondrial Complex I in Redox Balance and Imbalance inβCell Function and Dysfunction. J. Diabetes Res. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.J.; Chen, T.M.; Yang, T.S.; Wang, D.S.; Lin, S.Z. Regional skin blood flow in deep burn wounds: A preliminary report. Burns 1995, 21, 340–343. [Google Scholar] [CrossRef]
- Krupatkin, A.I.; Sidorov, V.V. Functional Diagnostics of the State of Microcirculatory-Tissue Systems: Oscillations, Information, Nonlinearity: A Guide for Physicians; LIBROKOM Book House: Moscow, Russia, 2013; 496p. [Google Scholar]
- Gupta, M.; Mahajan, V.K.; Mehta, K.S.; Chauhan, P.S. Zinc Therapy in Dermatology: A Review. Dermatol. Res. Pract. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Jiang, J.; Pi, J.; Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018, 2018, 1–18. [Google Scholar] [CrossRef]
- Bhunia, A.K.; Samanta, P.K.; Saha, S.; Kamilya, T. ZnO nanoparticle-protein interaction: Corona formation with associated unfolding. Appl. Phys. Lett. 2013, 103, 143701. [Google Scholar] [CrossRef]
- Yin, H.; Chen, R.; Casey, P.S.; Ke, P.C.; Davis, T.P.; Chen, C. Reducing the cytotoxicity of ZnO nanoparticles by a pre-formed protein corona in a supplemented cell culture medium. RSC Adv. 2015, 5, 73963–73973. [Google Scholar] [CrossRef]
- Giau, V.-V.; Park, Y.-H.; Shim, K.-H.; Son, S.-W.; An, S.-S.A. Dynamic changes of protein corona compositions on the surface of zinc oxide nanoparticle in cell culture media. Front. Chem. Sci. Eng. 2019, 13, 90–97. [Google Scholar] [CrossRef]
- Srivastav, A.K.; Dhiman, N.; Khan, H.; Srivastav, A.K.; Yadav, S.K.; Prakash, J.; Arjaria, N.; Singh, D.; Yadav, S.; Patnaik, S.; et al. Impact of surface engineered ZnO nanoparticles on protein corona configuration and their interactions with biological system. J. Pharm. Sci. 2019, 108, 1872–1889. [Google Scholar] [CrossRef] [PubMed]
- Hassanian, M.; Aryapour, H.; Goudarzi, A.; Javan, M.B. Are zinc oxide nanoparticles safe? A structural study on human serum albumin using in vitro and in silico methods. J. Biomol. Struct. Dyn. 2021, 39, 330–335. [Google Scholar] [CrossRef]
- Rao, A.; Long, H.; Harley-Trochimczyk, A.; Pham, T.; Zettl, A.; Carraro, C.; Maboudian, R. In situ localized growth of ordered metal oxide hollow sphere array on microheater platform for sensitive, ultra-fast gas sensing. ACS Appl. Mater. Interfaces 2017, 9, 2634–2641. [Google Scholar] [CrossRef]
- Schöttler, S.; Landfester, K.; Mailänder, V. Controlling the stealth effect of nanocarriers through understanding the protein corona. Angew. Chem. Int. Ed. Engl. 2016, 55, 8806–8815. [Google Scholar] [CrossRef]
- Melnikova, N.B.; Malygina, D.S.; Vorobyova, O.A.; Solovyeva, A.G.; Belyaeva, K.L.; Orekhov, D.V.; Knyazev, A.V. Properties of Langmuir and immobilized layers of betulin diphosphate on aqueous solutions of zinc sulfate and on the surface of zinc oxide nanoparticles. Russ. Chem. Bull. Int. Ed. 2021, 70, 289–300. [Google Scholar] [CrossRef]
- Revin, V.V.; Liyas’kina, E.V.; Sapunova, N.B.; Bogatyreva, A.O. Isolation and characterization of the strains producing bacterial cellulose. Microbiology 2020, 14, 86–95. [Google Scholar] [CrossRef]
- Revin, V.V.; Pestov, N.A.; Shchankin, M.V.; Mishkin, V.M.; Platonov, V.I.; Uglanov, D.A. A study of the physical and mechanical properties of aerogels obtained from bacterial cellulose. Biomacromolecules 2019, 20, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Chikayama, E.; Tsuboi, Y.; Ishida, N.; Shisa, N.; Noritake, Y.; Moriya, S.; Kikuchi, J. Exploring the conformational space of amorphous cellulose using NMR chemical shifts. Carbohydr. Polym. 2012, 90, 1197–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atalla, R.H.; Vander Hart, D.L. The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl. Magn. Reson. 1999, 15, 1–19. [Google Scholar] [CrossRef]
- Ek, R.; Wormald, P.; Iversen, T.; Nyström, C. Crystallinity index of microcrystalline cellulose particles compressed into tablets. Int. J. Pharm. 1995, 125, 257–264. [Google Scholar] [CrossRef]
- Melnikova, N.B.; Malygina, D.S.; Klabukova, I.N.; Belov, D.V.; Vasin, V.A.; Petrov, P.S.; Knyazev, A.V.; Markin, A.V. Betulin-3,28-diphosphate. Physico-Chemical Properties and In Vitro Biological Activity Experiments. Molecules 2018, 23, 1175. [Google Scholar] [CrossRef] [Green Version]
- Bera, D.; Qian, L.; Sabui, S.; Santra, A.; Holloway, P.H. Photoluminescence of ZnO quantum dots produced by a sol-gel process. Opt. Mater. 2008, 30, 1233–1239. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, B.; Ding, N.; Ding, W.; Wang, L.; Yu, M.; Zhang, Q. Fast synthesize ZnO quantum dots via ultrasonic method. Ultrason. Sonochem. 2015, 30, 103–112. [Google Scholar] [CrossRef]
- Pakhomova, A.E.; Pakhomova, E.E.; Pakhomova, J.V.; Yavorsky, E.M. Method Experimental Modeling of Thermal Combustion at Laboratory. Animals. Patent No. RU 2,582,458 C1, 24 December 2014. [Google Scholar]
- Pakhomova, A.E.; Pakhomova, J.V.; Ovsyanko, E.V.; Zhurakovsky, I.P.; Karabintseva, N.O.; Pakhomova, E.E. Preclinical research of repalen ointment at treatment of thermal combustions in experiment. J. Sib. Med. Sci. 2015, 3, 98. [Google Scholar]
- Kochetygov, N.I. Burn Disease; Medicine: Leningrad, Russia, 1973; p. 247. [Google Scholar]
- Hosseinimehr, S.J.; Khorasani, G.; Azadbakht, M.; Zamani, P.; Ghasemi, M.; Ahmadi, A. Effect of aloe cream versus silver sulfadiazine for healing burn wounds in rats. Acta Dermatovenerol. Croat. 2010, 18, 2–7. [Google Scholar]
- Martusevich, A.K.; Larionova, K.D.; Peretyagin, S.P.; Peretyagin, P.V.; Davyduk, A.V. Experimental estimation of pharmacological compositions effect on microcirculation state at early postburn period. Fundam. Res. 2013, 3, 332–336. [Google Scholar]
- Dahmus, J.D.; Bruning, R.S.; Kenney, W.L.; Alexander, L.M. Oral clopidogrel improves cutaneuos microvascular function through EDHF-dependent mechanisms in middle-aged humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R452–R458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levdansky, V.; Kondrasenko, A.; Levdansky, A.; Kuznetsov, B. Synthesis of Betulin Diacetate and Betulin Dipropionate. J. Sib. Fed. Univ. Chem. 2016, 9, 337–344. [Google Scholar] [CrossRef]
- Sirota, T.V. A new approach to studying the autoxidation of adrenaline: Possibility of the determination of superoxide dismutase activity and the antioxidant properties of various preparations by polarography. Biomed. Khi. 2012, 58, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packer, L. Catalase in Vitro. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 121–126. ISBN 012182005X. [Google Scholar]
- Dawson, J.M.; Heatlic, P.L. Lowry method of protein quantification evidence for photosensitivity. Anal. Biochem. 1984, 140, 391–393. [Google Scholar] [CrossRef]
- Stroescu, M.; Stoica-Guzun, A.; Jinga, S.I.; Dobre, T.; Jipa, I.M.; Dobre, L.M. Influence of sodium dodecyl sulfate and cetyl trimethylammonium bromide upon calcium carbonate precipitation on bacterial cellulose. Korean J. Chem. Eng. 2012, 29, 1216–1223. [Google Scholar] [CrossRef]
- Melnikova, N.; Malygina, D.; Panteleev, D.; Vorobyova, O.; Solovyeva, A.; Belyaeva, K.; Klabukova, I. The improvement of betulin-3, 28-diphosphate water-solubility by complexation with amines–meglumine and xymedon. Int. J. Pharm. Pharm. Sci. 2019, 11, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Rupasinghe, R.A. Dissolution and Aggregation of Zinc Oxide Nanoparticles at Circumneutral pH; A Study of Size Effects in the Presence and Absence of Citric Acid. Master’s Thesis, University of Iowa, Iowa, IA, USA, 2011. [Google Scholar]
- Kuptsov, A.H.; Zhizhin, G.N. Handbook of Fourier Transform. Raman and Infrared Spectra of Polymers; Elsevier: Amsterdam, The Netherlands, 1998; Volume 45, p. 536. [Google Scholar]
- Revin, V.V.; Nazarova, N.B.; Tsareva, E.E.; Liyaskina, E.V.; Revin, V.D.; Pestov, N.A. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect. Front. Bioeng. Biotechnol. 2020, 8, 1392. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lv, X.; Chen, S.; Li, Z.; Sun, X.; Feng, C.; Wang, H.; Xu, Y. In vitro biodegradability of bacterial cellulose by cellulase in simulated body fluid and compatibility in vivo. Cellulose 2016, 23, 3187–3198. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, X.; Yang, J.; Zhu, R.; Zhang, Z.; Li, Y. Development and biocompatibility evaluation of biodegradable bacterial cellulose as a novel peripheral nerve scaffold. J. Biomed. Mater. Res. A 2018, 106, 1288–1298. [Google Scholar] [CrossRef] [PubMed]
- Stefanovska, A.; Bracic, M.; Desiree Kvernmo, H. Wavelet Analysis of Oscillations in the Peripheral Blood Circulation Measured by Laser Doppler Technique. IEEE Trans. Biomed. Eng. 1999, 46, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
BC Type | 1 Step | 2 Step | 3 Step |
---|---|---|---|
film | soaking, 3 h in 1% trisamine solution, then 5 h in aq. solution of Zn(NO3)2∙4 H2O | BC film removing and transfer into shallow container with 0.1 M solution of NaOH for 10 min at 50 °C | rinse with distilled water until the composite pH became neutral, then drying |
film | soaking, 3 h in 1% trisamine solution or DDS-Na or benzalkonium chloride for 30 min | BC film removing and transfer into shallow container, then spraying of ZnO NPs water-alcohol dispersion onto film surface | drying |
powder | soaking, 3 h in 1% trisamine solution or DDS-Na or benzalkonium chloride for 30 min, sonification | transfer into vessel, then adding of ZnO NPs water-alcohol dispersion, then sonification | separation solid phase, rinse with distilled water until the composite pH became neutral, then drying |
Figure Number | Sample | Composition (Treatment 1) | 2θ, Degree | D, nm | Structure Signal |
---|---|---|---|---|---|
a | 1 | ZnO NPs-PEG | 36.18 | 14.040 | ZnO (wurtzite) |
47.60 | 11.562 | ||||
56.54 | 12.285 | ||||
b | 2 | BC | 22.96 | 4.749 | BC |
c | 3 | BC (film)–ZnO NPs | 22.68 | 4.601 | BC |
36.38 | 18.719 | ZnO (wurtzite) | |||
47.80 | 18.284 | ||||
56.84 | 15.725 | ||||
d | 4 | BC–ZnO NPs | 23.08 | 5.520 | BC |
36.64 | 10.620 | ZnO (wurtzite) | |||
- | - | ZnO NPs 2 | 31.76 | 11.600 | ZnO (wurtzite) |
34.36 | 17.500 | ||||
36.22 | 11.700 |
Figure Number | Sample | Procedure | ZnO NPs Content, g in 0.5 g BC (%), n = 3 | 2θ, Degree | D, nm | Signal | |
---|---|---|---|---|---|---|---|
Added | Found (AAS) | ||||||
a | 5 | 1. Preparation of ZnO NPs dispersion in 1% tris aqueous solution (25 mL) at pH 10. 2. Ultrasound treatment 3. BC addition to dispersion under sonification 4. Storage for 1 h 5. Filtration and drying at 120 °C | 0.150 (23.0 ± 0.1%) | (26.0 ± 0.2)% | 22.96 | 5.88 | BC |
36.64 | 11.19 | ZnO | |||||
b | 6 | 1. Preparation of BC water-ethanol dispersion in the presence of 0.01% DDS-Na aqueous solution (0.1 mL) at pH 10. 2. Ultrasound treatment 3. ZnO NPs addition to dispersion under sonification 4. Storage for 1 h 5. Filtration and drying at 120 °C | 0.150 (23.0 ± 0.1%) | (22.6 ± 0.2)% | 22.74 | 5.10 | BC |
36.44 | 12.28 | ZnO |
Figure Number | Sample | ZnO NPs Content, g in 0.5 g BC (%), n = 3 | 2θ, Degree | D, nm | Signal | |
---|---|---|---|---|---|---|
Added | Found (AAS) | |||||
a | 7 | 0.025 (3.8%) | (6.6 ± 0.2)% | 22.64 | 6.33 | BC |
36.32 | 13.49 | ZnO | ||||
b | 8 | 0.075 (11.5%) | (16.9 ± 0.2)% | 22.68 | 5.37 | BC |
36.42 | 10.62 | ZnO | ||||
c | 5 | 0.150 (23.0%) | (26 ± 0.2)% | 22.96 | 5.88 | BC |
36.64 | 11.19 | ZnO |
Figure Number | Sample | Composition (Treatment 1) | 2θ, Degree | D, nm | Signal |
---|---|---|---|---|---|
a | 9 | BC-BDP (1%) | 22.48 | 6.25 | BC |
b | 10 | BC (DDS-Na 0.01%) + ZnO NPs + BDP | 22.64 | 4.40 | BC |
36.20 | 12.16 | ZnO |
Composition | ZnO, % | ν, sm−1 420–500 | |
---|---|---|---|
Ad. | Found, n = 3 | ||
ZnO NPs | 100 | 100 | 450–467 (υ ZnO NPs) |
BC | - | - | 596, 620, 642, 665, 899, 1037, 1062, 1200, 2366, 2900 (CH, CH2), 3347, 3355 (OH) |
BC-ZnO NPs | 16.67 | 17.8 ± 0.2 | 450–470 |
BC +0.01% DDS-Na + ZnO NPs | 16.67 | 16.2 ± 0.3 | 473 (ZnO NPs), |
Concentration of Studied Dispersion, μg∙mL−1 | Cell Viability, % of Control (Cells Only) | |||
---|---|---|---|---|
BC | BDP | BC-BDP | BC-ZnO NPs-BDP | |
0 | 101.0 ± 3.9 | 100.9 ± 2.0 | 100.4 ± 5.1 | 99.3 ± 4.5 |
12.5 | 102.2 ± 3.1 | 94.0 ± 3.1 | 105.2 ± 3.3 | 101.2 ± 3.3 |
25.0 | 105.8 ± 1.7 | 92.9 ± 1.8 | 102.6 ± 2.8 | 109.4 ± 5.2 |
50.0 | 104.0 ± 7.3 | 105.3 ± 8.4 | 93.8 ± 2.1 | 103.5 ± 1.0 |
100.0 | 110.3 ± 3.6 | 109.2 ± 2.1 | 107.7 ± 6.3 | 105.4 ± 5.9 |
Group | Wound Area, cm2 | ||||
---|---|---|---|---|---|
0 Day | 3 Day | 7 Day | 10 Day | 21 Day | |
Burn untreated | 21.643 ± 0.920 | 21.409 ± 0.835 | 20.772 ± 0.659 | 20.438 ± 0.899 | 17.492 ± 1.015 |
BC | 21.319 ± 0.932 | 21.282 ± 1.085 | 20.639 ± 0.599 | 19.921 ± 1.331 | 17.695 ± 2.532 |
BC-ZnO NPs-BDP (film) | 21.846 ± 0.679 | 21.645 ± 1.294 | 19.953 ± 0.291 | 19.455 ± 0.544 | 14.343 ± 0.756 |
Oleogel ZnO NPs-BDP | 21.599 ± 0.628 | 20.366 ± 0.306 | 18.798 ± 0.307 | 19.897 ± 0.313 | 12.825 ± 0.311 |
Time, Day | Group | MI, perf. un. 1 | E, arb. un. 2 | N, arb. un. | M, arb. un. | R, arb. un. | C, arb. un. |
---|---|---|---|---|---|---|---|
N/A | healthy | 13.26 ± 1.21 | 6.63 ± 0.60 | 6.14 ± 0.56 | 7.64 ± 0.69 | 22.72 ± 2.07 | 11.80 ± 1.07 |
0 | burnt | 6.31 ± 0.57 | 12.63 ± 1.15 | 14.68 ± 1.33 | 15.66 ± 1.42 | 14.14 ± 1.29 | 9.66 ± 0.88 |
3 | 12.96 ± 1.18 | 5.25 ± 0.48 | 6.73 ± 0.61 | 6.92 ± 0.63 | 24.95 ± 2.27 | 12.05 ± 1.10 | |
7 | 15.16 ± 1.38 | 6.05 ± 0.55 | 6.76 ± 0.61 | 8.61 ± 0.78 | 18.99 ± 1.73 | 11.53 ± 1.05 | |
10 | 14.86 ± 1.35 | 6.67 ± 0.61 | 6.43 ± 0.58 | 7.94 ± 0.72 | 21.07 ± 1.92 | 10.72 ± 0.97 | |
21 | 12.17 ± 1.11 | 7.34 ± 0.67 | 7.21 ± 0.66 | 6.13 ± 0.56 | 20.13 ± 1.83 | 9.43 ± 0.86 |
Time, Day | Group | MI, perf. un. 1 | E, arb. un. 2 | N, arb. un. | M, arb. un. | R, arb. un. | C, arb. un. |
---|---|---|---|---|---|---|---|
N/A | healthy | 13.26 ± 1.21 | 6.63 ± 0.60 | 6.14 ± 0.56 | 7.64 ± 0.69 | 22.72 ± 2.07 | 11.80 ± 1.07 |
0 | burnt | 6.31 ± 0.57 | 12.63 ± 1.15 | 14.68 ± 1.33 | 15.66 ± 1.42 | 14.14 ± 1.29 | 9.66 ± 0.88 |
3 | 11.47 ± 1.04 | 5.69 ± 0.52 | 6.51 ± 0.59 | 7.28 ± 0.66 | 27.87 ± 2.53 | 12.53 ± 1.14 | |
7 | 13.05 ± 1.19 | 6.00 ± 0.55 | 6.82 ± 0.62 | 7.81 ± 0.71 | 23.71 ± 2.16 | 10.42 ± 0.95 | |
10 | 13.19 ± 1.20 | 5.66 ± 0.51 | 7.17 ± 0.65 | 7.56 ± 0.69 | 23.08 ± 2.10 | 9.40 ± 0.85 | |
21 | 13.20 ± 1.20 | 5.76 ± 0.52 | 7.78 ± 0.71 | 6.85 ± 0.62 | 21.23 ± 1.93 | 10.47 ± 0.95 |
τ, Day | Catalase Activity, % of Control | |||
---|---|---|---|---|
Burnt Untreated | Oleogel | BC-BDP | BC-ZnO NPs-BDP | |
3 | 47.98 ± 1.16 | 50.03 ± 1.85 | 57.50 ± 0.82 | 53.11 ± 1.81 |
7 | 60.13 ± 1.78 | 50.71 ± 1.09 | 50.77 ± 0.66 | 86.71 ± 3.84 |
10 | 51.89 ± 2.54 | 59.38 ± 2.08 | 58.90 ± 1.11 | 60.41 ± 0.98 |
21 | N/A | 62.39 ± 1.62 | 65.84 ± 0.42 | 92.49 ± 3.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melnikova, N.; Knyazev, A.; Nikolskiy, V.; Peretyagin, P.; Belyaeva, K.; Nazarova, N.; Liyaskina, E.; Malygina, D.; Revin, V. Wound Healing Composite Materials of Bacterial Cellulose and Zinc Oxide Nanoparticles with Immobilized Betulin Diphosphate. Nanomaterials 2021, 11, 713. https://doi.org/10.3390/nano11030713
Melnikova N, Knyazev A, Nikolskiy V, Peretyagin P, Belyaeva K, Nazarova N, Liyaskina E, Malygina D, Revin V. Wound Healing Composite Materials of Bacterial Cellulose and Zinc Oxide Nanoparticles with Immobilized Betulin Diphosphate. Nanomaterials. 2021; 11(3):713. https://doi.org/10.3390/nano11030713
Chicago/Turabian StyleMelnikova, Nina, Alexander Knyazev, Viktor Nikolskiy, Peter Peretyagin, Kseniia Belyaeva, Natalia Nazarova, Elena Liyaskina, Darina Malygina, and Viktor Revin. 2021. "Wound Healing Composite Materials of Bacterial Cellulose and Zinc Oxide Nanoparticles with Immobilized Betulin Diphosphate" Nanomaterials 11, no. 3: 713. https://doi.org/10.3390/nano11030713
APA StyleMelnikova, N., Knyazev, A., Nikolskiy, V., Peretyagin, P., Belyaeva, K., Nazarova, N., Liyaskina, E., Malygina, D., & Revin, V. (2021). Wound Healing Composite Materials of Bacterial Cellulose and Zinc Oxide Nanoparticles with Immobilized Betulin Diphosphate. Nanomaterials, 11(3), 713. https://doi.org/10.3390/nano11030713