On Tailoring Co-Precipitation Synthesis to Maximize Production Yield of Nanocrystalline Wurtzite ZnS
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. On Synthesis
3.2. Temperature Effect
3.3. Structural and Microstructural Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thermoelectric Generator Power Products for Sale. Available online: https://tecteg.com/thermoelectric-generator-power-products-for-sale/ (accessed on 15 January 2021).
- Lawrence Livermore National Laboratory “Estimated Energy Use in 2015: 97.5 Quads”. Available online: https://flowcharts.llnl.gov (accessed on 20 December 2020).
- Li, Y.; Liao, Z.; Fang, F.; Wang, X.; Li, L.; Zhu, J. “Significant increase of Curie temperature in nano-scale BaTiO3”. Appl. Phys. Lett. 2014, 105, 182901. [Google Scholar] [CrossRef]
- Morozovska, A.N.; Eliseev, E.A.; Svechnikov, S.; Kalinin, V. Pyroelectric response of ferroelectric nanowires: Size effect and electric energy harvesting. J. Appl. Phys. 2010, 108, 042009. [Google Scholar] [CrossRef] [Green Version]
- Pyroelectric Sandwich Thermal Energy Harvesters US10147863B2 (A1) • 2018-12-04 • NASA [US], Earliest Priority: 2014-10-09 • Earliest Publication: 2016-04-14. Available online: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=10,147,863.PN.&OS=PN/10,147,863&RS=PN/10,147,863 (accessed on 15 November 2020).
- Shionoya, S.; Yen, W.M. Phosphor Handbook; CRC Press LLC: Boca Raton, FL, USA, 1999. [Google Scholar]
- Sarkar, R.; Tiwary, C.; Kumbhakar, P.; Basu, S.; Mitra, A. Yellow-orange light emission from Mn2+-doped ZnS nanoparticles. Phys. E: Low-dimensional Syst. Nanostructures 2008, 40, 3115–3120. [Google Scholar] [CrossRef]
- Whiffen, R.K.; Jovanović, D.; Antić, Ž.; Bártová, B.; Milivojević, D.; Dramićanin, M.; Brik, M. Structural, optical and crystal field analyses of undoped and Mn2+-doped ZnS nanoparticles synthesized via reverse micelle route. J. Lumin 2014, 146, 133–140. [Google Scholar] [CrossRef]
- Fang, X.; Bando, Y.; Gautam, U.K.; Zhai, T.; Zeng, H.; Xu, X.; Liao, M.; Golberg, D. ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors. Crit. Rev. Solid State Mater. Sci. 2009, 34, 190–223. [Google Scholar] [CrossRef]
- Wang, X.; Huang, H.; Liang, B.; Liu, Z.; Chen, D.; Shen, G. ZnS Nanostructures: Synthesis, Properties, and Applications. Crit. Rev. Solid State Mater. Sci. 2013, 38, 57–90. [Google Scholar] [CrossRef]
- Tiwari, A.; Dhoble, S.J. Critical Analysis of Phase Evolution, Morphological Control, Growth Mechanism and Photophysical Applications of ZnS Nanostructures (Zero-Dimensional to Three-Dimensional): A Review. Cryst. Growth Des. 2017, 17, 381–407. [Google Scholar] [CrossRef]
- Zhang, F.; Li, C.; Li, X.; Wang, X.; Wan, Q.; Xian, Y.; Jin, L.; Yamamoto, K. ZnS quantum dots derived a reagentless uric acid biosensor. Talanta 2006, 68, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Daemen, L.L.; Zhao, Y.; Zha, C.S.; Downs, R.T.; Wang, X.; Wang, Z.L.; Hemley, R.J. Morphology-tuned wurtzite-type ZnS nanobelts. Nat. Mater. 2005, 4, 922–927. [Google Scholar] [CrossRef]
- Zhao, Z.; Geng, F.; Cong, H.; Bai, J.; Cheng, H.-M. A simple solution route to controlled synthesis of ZnS submicrospheres, nanosheets and nanorods. Nanotechnology 2006, 17, 4731–4735. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Zhai, T.; Gautam, U.K.; Li, L.; Wu, L.; Bando, Y.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 2011, 56, 175–287. [Google Scholar] [CrossRef]
- Huo, F.; Wang, Y.; You, C.; Deng, W.; Yang, F.; Pu, Y. Phase- and size-controllable synthesis with efficient photocatalytic activity of ZnS nanoparticles. J. Mater. Sci. 2017, 52, 5626–5633. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, J.; Yu, J. Effect of effective mass and spontaneous polarization on photocatalytic activity of wurtzite and zinc-blende ZnS. APL Mater. 2015, 3, 104404. [Google Scholar] [CrossRef] [Green Version]
- Marchal, G. Pyroélectricité du sulfure de zinc en couches minces. J. Phys. 1970, 31, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Guo, W.; Pradel, K.C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z.L. Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef]
- Chavez, L.A.; Jimenez, F.O.Z.; Wilburn, B.R.; Delfin, L.C.; Kim, H.; Love, N.; Lin, Y. Characterization of Thermal Energy Harvesting Using Pyroelectric Ceramics at Elevated Temperatures. Energy Harvest. Syst. 2018, 5, 3–10. [Google Scholar] [CrossRef]
- La Porta, F.A.; Andrés, J.; Li, M.S.; Sambrano, J.R.; Varela, J.A.; Longo, E. Zinc blende versus wurtzite ZnS nanoparticles: Control of the phase and optical properties by tetrabutylammonium hydroxide. Phys. Chem. Chem. Phys. 2014, 16, 20127–20137. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, Z.; Lu, H.; Zhang, L.; Yang, B. ZnS nanoparticles well dispersed in ethylene glycol: Coordination control synthesis and application as nanocomposite optical coatings. Nanotechnology 2014, 25, 115601. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Zhu, H.; Hadjipanayis, A.G.C.; Xiao, J.Q. Low-Temperature Synthesis of Hexagonal (Wurtzite) ZnS Nanocrystals. J. Am. Chem. Soc. 2004, 126, 6874–6875. [Google Scholar] [CrossRef]
- European Environment Agency. Circular by Design Products in the Circular Economy; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Timchenko, V.P.; Novozhilov, A.L.; Slepysheva, O.A. Kinetics of Thermal Decomposition of Thiourea. Russ. J. Gen. Chem. 2004, 74, 1046–1050. [Google Scholar] [CrossRef]
- Rao, T.P.; Ramakrishna, T.V. Spectrophotometric determination of zinc with thiocyanate and Rhodamine 6G. Analyst 1980, 105, 674–678. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Q.; Wang, J. Thermodynamic Analysis of Decomposition of Thiourea and Thiourea Oxides. J. Phys. Chem. B 2005, 109, 17281–17289. [Google Scholar] [CrossRef]
- Madarász, J.; Pokol, G. Comparative evolved gas analyses on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments. J. Therm. Anal. Calorim. 2007, 88, 329–336. [Google Scholar] [CrossRef]
- Labiadh, H.; Lahbib, K.; Hidouri, S.; Touil, S.; Ben Chaabane, T. Insight of ZnS nanoparticles contribution in different biological uses. Asian Pac. J. Trop. Med. 2016, 9, 757–762. [Google Scholar] [CrossRef] [Green Version]
- Reverberi, A.; Vocciante, M.; Lunghi, E.; Pietrelli, L.; Fabiano, B. New Trends in the Synthesis of Nanoparticles by Green Methods. Chem. Eng. Trans. 2017, 61, 667–672. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krsmanović Whiffen, R.; Montone, A.; Pietrelli, L.; Pilloni, L. On Tailoring Co-Precipitation Synthesis to Maximize Production Yield of Nanocrystalline Wurtzite ZnS. Nanomaterials 2021, 11, 715. https://doi.org/10.3390/nano11030715
Krsmanović Whiffen R, Montone A, Pietrelli L, Pilloni L. On Tailoring Co-Precipitation Synthesis to Maximize Production Yield of Nanocrystalline Wurtzite ZnS. Nanomaterials. 2021; 11(3):715. https://doi.org/10.3390/nano11030715
Chicago/Turabian StyleKrsmanović Whiffen, Radenka, Amelia Montone, Loris Pietrelli, and Luciano Pilloni. 2021. "On Tailoring Co-Precipitation Synthesis to Maximize Production Yield of Nanocrystalline Wurtzite ZnS" Nanomaterials 11, no. 3: 715. https://doi.org/10.3390/nano11030715
APA StyleKrsmanović Whiffen, R., Montone, A., Pietrelli, L., & Pilloni, L. (2021). On Tailoring Co-Precipitation Synthesis to Maximize Production Yield of Nanocrystalline Wurtzite ZnS. Nanomaterials, 11(3), 715. https://doi.org/10.3390/nano11030715