Synthesis and Characterization of π-SnS Nanoparticles and Corresponding Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Details
2.3. Characterization Details
3. Results and Discussion
3.1. Growth of π-SnS Nanoparticles
3.2. Properties of π-SnS Nanoparticles
3.3. Properties of π-SnS Thin Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.; Yong, K. Non-vacuum deposition of CIGS absorber films for low-cost thin film solar cells. Korean J. Chem. Eng. 2013, 30, 1347–1358. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, D.S.; Mun, T.; Pejjai, B.; Minnam Reddy, V.R.; Anderson, T.J.; Park, C. Formation and characterization of CuInSe2 thin films from binary CuSe and In2Se3 nanocrystal-ink spray. Korean J. Chem. Eng. 2016, 33, 2486–2491. [Google Scholar] [CrossRef]
- Truong, N.T.N.; Hoang, H.H.T.; Trinh, T.K.; Pham, V.T.H.; Smith, R.P.; Chinho, P. Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance. Korean J. Chem. Eng. 2017, 34, 1208–1213. [Google Scholar] [CrossRef]
- Abdelbasir, S.M.; Shalan, A.E. An overview of nanomaterials for industrial wastewater treatment. Korean J. Chem. Eng. 2019, 36, 1209–1225. [Google Scholar] [CrossRef]
- Adhikari, S.; Mandai, S.; Kim, D.-H. Free-standing Ag nanoparticle-decorated MoS2 microflowers grown on carbon cloth for photocatalytic oxidation of Rhodamine B. Korean J. Chem. Eng. 2020, 37, 2359–2367. [Google Scholar] [CrossRef]
- Lim, E.; Chun, J.; Jo, C.; Hwang, J. Recent advances in the synthesis of mesoporous materials and their application to lithium-ion batteries and hybrid supercapacitors. Korean J. Chem. Eng. 2021, 37, 1–21. [Google Scholar] [CrossRef]
- Hegde, S.S.; Murahari, P.; Fernandes, B.J.; Venkatesh, R.; Ramesh, K. Synthesis, thermal stability and structural transition of cubic SnS nanoparticles. J. Alloys Compd. 2020, 820, 153116. [Google Scholar] [CrossRef]
- Sinsermsuksakul, P.; Sun, L.; Lee, S.W.; Park, H.H.; Kim, S.B.; Yang, C.; Gordon, R.G. Overcoming Efficiency Limitations of SnS-Based Solar Cells. Adv. Energy Mater. 2014, 4, 1400496. [Google Scholar] [CrossRef]
- Nair, P.K.; Garcia-Angelmo, A.R.; Nair, M.T.S. Cubic and orthorhombic SnS thin-film absorbers for tin sulfide solar cells. Phys. Status Solidi 2016, 213, 170–177. [Google Scholar] [CrossRef]
- Garcia-Angelmo, A.R.; Romano-Trujillo, R.; Campos-Álvarez, J.; Gomez-Daza, O.; Nair, M.T.S.; Nair, P.K. Thin film solar cell of SnS absorber with cubic crystalline structure. Phys. Status Solidi 2015, 212, 2332–2340. [Google Scholar] [CrossRef]
- Abutbul, R.E.; Segev, E.; Zeiri, L.; Ezersky, V.; Makov, G.; Golan, Y. Synthesis and properties of nanocrystalline π-SnS—A new cubic phase of tin sulphide. RSC Adv. 2016, 6, 5848–5855. [Google Scholar] [CrossRef]
- Zappia, M.I.; Bianca, G.; Bellani, S.; Serri, M.; Najafi, L.; Oropesa-Nuñez, R.; Martín-García, B.; Bouša, D.; Sedmidubský, D.; Pellegrini, V.; et al. Solution-Processed GaSe Nanoflake-Based Films for Photoelectrochemical Water Splitting and Photoelectrochemical-Type Photodetectors. Adv. Funct. Mater. 2020, 30, 1909572. [Google Scholar] [CrossRef]
- Bianca, G.; Zappia, M.I.; Bellani, S.; Sofer, Z.; Serri, M.; Najafi, L.; Oropesa-Nuñez, R.; Martín-García, B.; Hartman, T.; Leoncino, L.; et al. Liquid-Phase Exfoliated GeSe Nanoflakes for Photoelectrochemical-Type Photodetectors and Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2020, 12, 48598–48613. [Google Scholar] [CrossRef]
- Najafi, L.; Bellani, S.; Castelli, A.; Arciniegas, M.P.; Brescia, R.; Oropesa-Nuñez, R.; Martín-García, B.; Serri, M.; Drago, F.; Manna, L.; et al. Octapod-Shaped CdSe Nanocrystals Hosting Pt with High Mass Activity for the Hydrogen Evolution Reaction. Chem. Mater. 2020, 32, 2420–2429. [Google Scholar] [CrossRef]
- Behera, C.; Ghosh, S.P.; Kar, J.P.; Samal, S.L. Facile synthesis and enhanced photocatalytic activity of Ag–SnS nanocomposites. New J. Chem. 2020, 44, 11684–11693. [Google Scholar] [CrossRef]
- de Oliveira, P.F.M.; Torresi, R.M.; Emmerling, F.; Camargo, P.H.C. Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles. J. Mater. Chem. A 2020, 8, 16114–16141. [Google Scholar] [CrossRef]
- Chopra, K.L.; Kainthla, R.C.; Pandya, D.K.; Thakoor, A.P. Chemical solution deposition of inorganic films. In Physics of Thin Films; Elsevier: Amsterdam, The Netherlands, 1982; Volume 12, pp. 167–235. ISBN 0079-1970. [Google Scholar]
- Savadogo, O.; Mandal, K.C. Studies on new chemically deposited photoconducting antimony trisulphide thin films. Sol. Energy Mater. Sol. Cells 1992, 26, 117–136. [Google Scholar] [CrossRef]
- Licht, S.; Longo, K.; Peramunage, D.; Forouzan, F. Conductometric analysis of the second acid dissociation constant of H2S in highly concentrated aqueous media. J. Electroanal. Chem. Interfacial Electrochem. 1991, 318, 111–129. [Google Scholar] [CrossRef]
- Wired Chemist, Solubility Product Constants, Ksp. Available online: http://www.wiredchemist.com/chemistry/data/solubility-product-constants (accessed on 30 April 2018).
- Hegde, S.S.; Surendra, B.S.; Talapatadur, V.; Murahari, P.; Ramesh, K. Visible light photocatalytic properties of cubic and orthorhombic SnS nanoparticles. Chem. Phys. Lett. 2020, 754, 137665. [Google Scholar] [CrossRef]
- Skelton, J.M.; Burton, L.A.; Oba, F.; Walsh, A. Chemical and lattice stability of the tin sulfides. J. Phys. Chem. C 2017, 121, 6446–6454. [Google Scholar] [CrossRef] [PubMed]
- Rabkin, A.; Samuha, S.; Abutbul, R.E.; Ezersky, V.; Meshi, L.; Golan, Y. New Nanocrystalline Materials: A Previously Unknown Simple Cubic Phase in the SnS Binary System. Nano Lett. 2015, 15, 2174–2179. [Google Scholar] [CrossRef] [PubMed]
- Skelton, J.M.; Burton, L.A.; Jackson, A.J.; Oba, F.; Parker, S.C.; Walsh, A. Lattice dynamics of the tin sulphides SnS 2, SnS and Sn 2 S 3: Vibrational spectra and thermal transport. Phys. Chem. Chem. Phys. 2017, 19, 12452–12465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gedi, S.; Minnam Reddy, V.R.; Kotte, T.R.R.; Park, Y.; Kim, W.K. Effect of C4H6O6 concentration on the properties of SnS thin films for solar cell applications. Appl. Surf. Sci. 2019, 465, 802–815. [Google Scholar] [CrossRef]
- Lindwall, G.; Shang, S.; Kelly, N.R.; Anderson, T.; Liu, Z.-K. Thermodynamics of the S–Sn system: Implication for synthesis of earth abundant photovoltaic absorber materials. Sol. Energy 2016, 125, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Gedi, S.; Minnam Reddy, V.R.; Park, C.; Chan-Wook, J.; KT, R.R. Comprehensive optical studies on SnS layers synthesized by chemical bath deposition. Opt. Mater. 2015, 42, 468–475. [Google Scholar] [CrossRef]
- Gedi, S.; Sun, Q.; Jeon, C.-W. Remarkable enhancement of the efficiency of Cu(In,Ga)Se2 solar cells by annealing the (In,Ga)2Se3 precursor layer. J. Alloys Compd. 2016, 659, 255–261. [Google Scholar] [CrossRef]
- Cortes, A. Grain size dependence of the bandgap in chemical bath deposited CdS thin films. Sol. Energy Mater. Sol. Cells 2004, 82, 21–34. [Google Scholar] [CrossRef]
- Javed, A.; Khan, N.; Bashir, S.; Ahmad, M.; Bashir, M. Thickness dependent structural, electrical and optical properties of cubic SnS thin films. Mater. Chem. Phys. 2020, 246, 122831. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedi, S.; Minnam Reddy, V.R.; Alhammadi, S.; Park, H.; Jang, C.; Park, C.; Kim, W.K. Synthesis and Characterization of π-SnS Nanoparticles and Corresponding Thin Films. Nanomaterials 2021, 11, 767. https://doi.org/10.3390/nano11030767
Gedi S, Minnam Reddy VR, Alhammadi S, Park H, Jang C, Park C, Kim WK. Synthesis and Characterization of π-SnS Nanoparticles and Corresponding Thin Films. Nanomaterials. 2021; 11(3):767. https://doi.org/10.3390/nano11030767
Chicago/Turabian StyleGedi, Sreedevi, Vasudeva Reddy Minnam Reddy, Salh Alhammadi, Hyeonwook Park, Chelim Jang, Chinho Park, and Woo Kyoung Kim. 2021. "Synthesis and Characterization of π-SnS Nanoparticles and Corresponding Thin Films" Nanomaterials 11, no. 3: 767. https://doi.org/10.3390/nano11030767
APA StyleGedi, S., Minnam Reddy, V. R., Alhammadi, S., Park, H., Jang, C., Park, C., & Kim, W. K. (2021). Synthesis and Characterization of π-SnS Nanoparticles and Corresponding Thin Films. Nanomaterials, 11(3), 767. https://doi.org/10.3390/nano11030767