Probing the Surface Chemistry of Nanoporous Gold via Electrochemical Characterization and Atom Probe Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Electrochemistry
2.2.1. Cyclic Voltammetry
2.2.2. Electrochemical Dealloying
2.2.3. Electrochemical Impedance Spectroscopy (EIS)
3. Results
3.1. APT Limitation in Resolving Interfaces
3.2. Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Newman, R.C. 2.05–Dealloying. In Shreir’s Corrosion; Cottis, B., Graham, M., Lindsay, R., Lyon, S., Richardson, T., Scantlebury, D., Stott, H., Eds.; Elsevier: Oxford, UK, 2010; pp. 801–809. [Google Scholar]
- Erlebacher, J.; Newman, R.C.; Sieradzki, K. Chapter 2. Fundamental Physics and Chemistry of Nanoporosity Evolution during Dealloying. In Nanoporous Gold: From an Ancient Technology to a High-Tech Material; The Royal Society of Chemistry: Cambridge, UK, 2012; pp. 11–29. [Google Scholar]
- Zhang, J.; Liu, P.; Ma, A.H.; Ding, Y. Nanostructured Porous Gold for Methanol Electro-Oxidation. J. Phys. Chem. C 2007, 111, 10382–10388. [Google Scholar] [CrossRef]
- Vega, A.A.; Newman, R.C. Methanol Electro-oxidation on Nanoporous Metals Formed by Dealloying of Ag–Au–Pt Alloys. J. Appl. Electrochem. 2016, 46, 995–1010. [Google Scholar] [CrossRef]
- Şeker, E.; Shih, W.-C.; Stine, K.J. Nanoporous Metals by Alloy Corrosion: Bioanalytical and Biomedical Applications. MRS Bull. 2018, 43, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.S.; Newman, R. Nanoporous Gold as a VOC Sensor, Based on Nanoscale Electrical Phenomena and Convolutional Neural Networks. Sensors 2020, 20, 2851. [Google Scholar] [CrossRef]
- Wong, T.S.B.; Newman, R.C. A Novel Application of Nanoporous Gold to Humidity Sensing: A Framework for a General Volatile Compound Sensor. Nanoscale Adv. 2020, 2, 777–784. [Google Scholar] [CrossRef] [Green Version]
- El-Zoka, A.; Langelier, B.; Botton, G.; Newman, R. Enhanced Analysis of Nanoporous Gold by Atom Probe Tomography. Mater. Charact. 2017, 128, 269–277. [Google Scholar] [CrossRef]
- Ebrahimy, A.F.; Langelier, B.; Newman, R.C. Atom Probe Tomography of Nanoporous Gold Formed by Dealloying Lean Noble Alloys. Mater. Today Commun. 2020, 25, 101371. [Google Scholar] [CrossRef]
- Vurpillot, F.; Bostel, A.; Blavette, D. Trajectory Overlaps and Local Magnification in Three-dimensional Atom Probe. Appl. Phys. Lett. 2000, 76, 3127–3129. [Google Scholar] [CrossRef]
- Larson, D.; Gault, B.; Geiser, B.; De Geuser, F.; Vurpillot, F. Atom Probe Tomography Spatial Reconstruction: Status and Directions. Curr. Opin. Solid State Mater. Sci. 2013, 17, 236–247. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Hetherington, M. Local Magnification Effects in the Atom Probe. Surf. Sci. 1991, 246, 442–449. [Google Scholar] [CrossRef]
- Vega, A.A.; Newman, R.C. Nanoporous Metals Fabricated through Electrochemical Dealloying of Ag-Au-Pt with Systematic Variation of Au:Pt Ratio. J. Electrochem. Soc. 2013, 161, C1–C10. [Google Scholar] [CrossRef]
- Jerkiewicz, G. Electrochemical Hydrogen Adsorption and Absorption. Part 1: Under-potential Deposition of Hydrogen. Electrocatalysis 2010, 1, 179–199. [Google Scholar] [CrossRef]
- Woods, R. Electrolytically Co-deposited Platinum-gold Electrodes and Their Electrocatalytic Activity for Acetate Ion Oxidation. Electrochim. Acta 1969, 14, 533–540. [Google Scholar] [CrossRef]
- Vega, A.A.; Newman, R.C.; Luo, S.; Zhou, D.B. Beneficial Effects of Adsorbate-Induced Surface Segregation of Pt in Nanoporous Metals Fabricated by Dealloying of Ag-Au-Pt Alloys. J. Electrochem. Soc. 2013, 161, C11–C19. [Google Scholar] [CrossRef]
- Behm, R. Interaction of Hydrogen with Bimetallic Surfaces. Z. Phys. Chem. 2009, 223, 9–36. [Google Scholar] [CrossRef]
- Bergbreiter, A.; Alves, O.B.; Hoster, H.E. Entropy Effects in Atom Distribution and Electrochemical Properties of AuxPt1−x/Pt(111) Surface Alloys. ChemPhysChem 2010, 11, 1505–1512. [Google Scholar] [CrossRef]
- Stephens, J.A.; Hwang, G.S. Atomic Arrangements in AuPt/Pt(100) and AuPd/Pd(100) Surface Alloys: A Monte Carlo Study Using First Principles-Based Cluster Expansions. J. Phys. Chem. C 2011, 115, 21205–21210. [Google Scholar] [CrossRef]
- Li, H.; Shin, K.; Henkelman, G. Effects of Ensembles, Ligand, and Strain on Adsorbate Binding to Alloy Surfaces. J. Chem. Phys. 2018, 149, 174705. [Google Scholar] [CrossRef]
- Crowe, D.C.; Tromans, D. The Silver Sulfide Reference Electrode for Use in Alkaline Sulfide Solutions. Corrosion 1986, 42, 409–415. [Google Scholar] [CrossRef]
- Birss, V.I.; Wright, G.A. The Kinetics of the Anodic Formation and Reduction of Phase Silver Sulfide Films on Silver in Aqueous Sulfide Solutions. Electrochim. Acta 1981, 26, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- El-Zoka, A.A.; Langelier, B.; Korinek, A.; Botton, G.A.; Newman, R.C.; El-Zoka, A. Nanoscale Mechanism of the Stabilization of Nanoporous Gold by Alloyed Platinum. Nanoscale 2018, 10, 4904–4912. [Google Scholar] [CrossRef] [PubMed]
- El-Zoka, A.A.; Langelier, B.; Korinek, A.; Botton, G.A.; Newman, R.C. Advances in Nanoscale Characterization of Refined Nanoporous Gold. Electrochim. Acta 2018, 283, 611–618. [Google Scholar] [CrossRef]
- El-Zoka, A.A.; Langelier, B.; Botton, G.A.; Newman, R.C. Morphological Evolution of Pt-modified Nanoporous Gold after Thermal Coarsening in Reductive and Oxidative Environments. NPJ Mater. Degrad. 2020, 4, 1–6. [Google Scholar] [CrossRef]
- Serebrinsky, S.; Galvele, J. Effect of the Strain Rate on Stress Corrosion Crack Velocities in Face-centred Cubic Alloys: A Mechanistic Interpretation. Corros. Sci. 2004, 46, 591–612. [Google Scholar] [CrossRef]
- Newman, R.C.; Senior, N.A. A Revised Interpretation of Ultra-fast Stress Corrosion Cracking Experiments by Serebrinsky and Galvele. Corros. Sci. 2010, 52, 1541–1544. [Google Scholar] [CrossRef]
- Hepel, M.; Bruckenstein, S.; Tang, G. The Formation and Electroreduction of Silver Sulfide Films at a Silver Metal Electrode. J. Electroanal. Chem. Interfacial Electrochem. 1989, 261, 389–400. [Google Scholar] [CrossRef]
- Hatchett, D.W.; Gao, X.; Catron, S.W.; White, H.S. Electrochemistry of Sulfur Adlayers on Ag(111). Evidence for a Concentration- and Potential-Dependent Surface-Phase Transition. J. Phys. Chem. 1996, 100, 331–338. [Google Scholar] [CrossRef]
- Birss, V.I.; Wright, G.A. The Potentiodyanmic Formation and Reduction of a Silver Sulfide Monolayer on a Silver Electrode in Aqueous Sulfide Solutions. Electrochim. Acta 1982, 27, 1–7. [Google Scholar] [CrossRef]
- Aloisi, G.D.; Cavallini, M.; Innocenti, M.; Foresti, M.L.; Pezzatini, A.G.; Guidelli, R. In Situ STM and Electrochemical Investigation of Sulfur Oxidative Underpotential Deposition on Ag(111). J. Phys. Chem. B 1997, 101, 4774–4780. [Google Scholar] [CrossRef]
- Lastraioli, E.; Loglio, F.; Cavallini, M.; Simeone, F.; Innocenti, M.; Carlà, F.; Foresti, M.L. In situ Scanning Tunneling Microscopy Investigation of Sulfur Oxidative Underpotential Deposition on Ag(100) and Ag(110). Langmuir 2010, 26, 17679–17685. [Google Scholar] [CrossRef]
- Giggenbach, W. Optical Spectra of Highly Alkaline Sulfide Solutions and the Second Dissociation Constant of Hydrogen Sulfide. Inorg. Chem. 1971, 10, 1333–1338. [Google Scholar] [CrossRef]
- Pourbaix, M.; Pourbaix, A. Potential-pH Equilibrium Diagrams for the System S-H2O from 25 to 150 °C: Influence of Access of Oxygen in Sulphide Solutions. Geochim. Cosmochim. Acta 1992, 56, 3157–3178. [Google Scholar] [CrossRef]
- Horanyi, G.; Vértes, G. Radiotracer Study of the Underpotential Formation of a Silver Sulfide Monolayer on Silver Electrodes in Alkaline Medium. Electrochim. Acta 1986, 31, 1663–1665. [Google Scholar] [CrossRef]
- Wierse, D.; Lohrengel, M.; Schultze, J. Electrochemical Properties of Sulfur Adsorbed on Gold Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1978, 92, 121–131. [Google Scholar] [CrossRef]
- Buckley, A.; Hamilton, I.; Woods, R. An Investigation of the Sulphur(−II)/sulphur(0) System on Bold Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1987, 216, 213–227. [Google Scholar] [CrossRef]
- Lezna, R.; De Tacconi, N.; Arvia, A. Modulated Reflectance Spectroscopy and Voltammetry of the Sulphide/Gold System. J. Electroanal. Chem. Interfacial Electrochem. 1990, 283, 319–336. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhang, Y.; Weaver, M.J. Observing Surface Chemical Transformations by Atomic-resolution Scanning Tunneling Microscopy: Sulfide Electrooxidation on Gold(111). J. Phys. Chem. 1992, 96, 4156–4159. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, Y.; Weaver, M.J. Adsorption and Electrooxidative Pathways for Sulfide on Gold as Probed by Real-time Surface-enhanced Raman Spectroscopy. Langmuir 1992, 8, 668–672. [Google Scholar] [CrossRef]
- Parker, G.K.; Watling, K.M.; Hope, G.A.; Woods, R. A SERS Spectroelectrochemical Investigation of the Interaction of Sulfide Species with Gold Surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2008, 318, 151–159. [Google Scholar] [CrossRef]
- Gilis, N.; Jacobs, L.; Barroo, C.; De Bocarmé, T.V. Surface Segregation in Au–Ag Alloys Investigated by Atom Probe Tomography. Top. Catal. 2018, 61, 1437–1448. [Google Scholar] [CrossRef]
- Bozzolo, G.; Garcés, J.E.; Derry, G.N. Atomistic Modeling of Segregation and Bulk Ordering in Ag–Au Alloys. Surf. Sci. 2007, 601, 2038–2046. [Google Scholar] [CrossRef]
- King, T.; Donnelly, R. Surface Compositions and Composition Profiles of Ag Au (100), (110), and (111) Surfaces Determined Quantitatively by Auger Electron Spectroscopy. Surf. Sci. 1985, 151, 374–399. [Google Scholar] [CrossRef]
- Wang, H.; Najafabadi, R.; Srolovitz, D.; Lesar, R. Interfacial Segregation in Ag-Au, Au-Pd, and Cu-Ni Alloys: I. (100) Surfaces. Interface Sci. 1993, 1, 7–30. [Google Scholar] [CrossRef]
- Burton, J.J.; Machlin, E.S. Prediction of Segregation to Alloy Surfaces from Bulk Phase Diagrams. Phys. Rev. Lett. 1976, 37, 1433–1436. [Google Scholar] [CrossRef]
- Déronzier, T.; Morfin, F.; Lomello, M.; Rousset, J.-L. Catalysis on Nanoporous Gold–silver Systems: Synergistic Effects toward Oxidation Reactions and Influence of the Surface Composition. J. Catal. 2014, 311, 221–229. [Google Scholar] [CrossRef]
- Barroo, C.; Montemore, M.M.; Janvelyan, N.; Zugic, B.; Akey, A.J.; Magyar, A.P.; Ye, J.; Kaxiras, E.; Biener, J.; Bell, D.C. Macroscopic 3D Nanoporosity Formation by Dry Oxidation of AgAu Alloys. J. Phys. Chem. C 2017, 121, 5115–5122. [Google Scholar] [CrossRef]
- Moskaleva, L.V.; Weiss, T.; Klüner, T.; Bäumer, M.; Kluener, T.; Baeumer, M. Chemisorbed Oxygen on the Au(321) Surface Alloyed with Silver: A First-Principles Investigation. J. Phys. Chem. C 2015, 119, 9215–9226. [Google Scholar] [CrossRef]
- Barroo, C.; Janvelyan, N.; Zugic, B.; Magyar, A.P.; Akey, A.J.; Biener, J.; Friend, C.M.; Bell, D.C. Surface Modifications during a Catalytic Reaction: A Combined APT and FIB/SEM Analysis of Surface Segregation. Microsc. Microanal. 2016, 22, 356–357. [Google Scholar] [CrossRef] [Green Version]
- Rouya, E.; Cattarin, S.; Reed, M.L.; Kelly, R.G.; Zangari, G. Electrochemical Characterization of the Surface Area of Nanoporous Gold Films. J. Electrochem. Soc. 2012, 159, K97–K102. [Google Scholar] [CrossRef]
- Wang, J.; Fang, W.; Hu, Y.; Zhang, Y.; Dang, J.; Wu, Y.; Zhao, H.; Li, Z. Different Phases of Few-layer MoS2 and Their Silver/Gold Nanocomposites for Efficient Hydrogen Evolution Reaction. Catal. Sci. Technol. 2020, 10, 154–163. [Google Scholar] [CrossRef]
- Zhao, C.; Yu, Z.; Xing, J.; Zou, Y.; Liu, H.; Zhang, H.; Yu, W.; Idriss, H.; Guo, C. Effect of Ag2S Nanocrystals/Reduced Graphene Oxide Interface on Hydrogen Evolution Reaction. Catalysts 2020, 10, 948. [Google Scholar] [CrossRef]
- Basu, M.; Nazir, R.; Fageria, P.; Pande, S. Construction of CuS/Au Heterostructure through a Simple Photoreduction Route for Enhanced Electrochemical Hydrogen Evolution and Photocatalysis. Sci. Rep. 2016, 6, 34738. [Google Scholar] [CrossRef]
- Hellstern, T.R.; Kibsgaard, J.; Tsai, C.; Palm, D.W.; King, L.A.; Abild-Pedersen, F.; Jaramillo, T.F. Investigating Catalyst–Support Interactions to Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo3S13]2– Nanoclusters. ACS Catal. 2017, 7, 7126–7130. [Google Scholar] [CrossRef]
- Hota, P.; Bose, S.; Dinda, D.; Das, P.; Ghorai, U.K.; Bag, S.; Mondal, S.; Saha, S.K. Nickel-Doped Silver Sulfide: An Efficient Air-Stable Electrocatalyst for Hydrogen Evolution from Neutral Water. ACS Omega 2018, 3, 17070–17076. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foroozan-Ebrahimy, A.; Langelier, B.; Newman, R.C. Probing the Surface Chemistry of Nanoporous Gold via Electrochemical Characterization and Atom Probe Tomography. Nanomaterials 2021, 11, 1002. https://doi.org/10.3390/nano11041002
Foroozan-Ebrahimy A, Langelier B, Newman RC. Probing the Surface Chemistry of Nanoporous Gold via Electrochemical Characterization and Atom Probe Tomography. Nanomaterials. 2021; 11(4):1002. https://doi.org/10.3390/nano11041002
Chicago/Turabian StyleForoozan-Ebrahimy, AmirHossein, Brian Langelier, and Roger Charles Newman. 2021. "Probing the Surface Chemistry of Nanoporous Gold via Electrochemical Characterization and Atom Probe Tomography" Nanomaterials 11, no. 4: 1002. https://doi.org/10.3390/nano11041002
APA StyleForoozan-Ebrahimy, A., Langelier, B., & Newman, R. C. (2021). Probing the Surface Chemistry of Nanoporous Gold via Electrochemical Characterization and Atom Probe Tomography. Nanomaterials, 11(4), 1002. https://doi.org/10.3390/nano11041002