Polysubstituted High-Entropy [LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskites: Correlation of the Electrical and Magnetic Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Chemical Composition and Structural Features
3.2. Configuration Entropy
3.3. Electrical Properties
3.4. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kozlovskiy, A.; Kenzhina, I.; Zdorovets, M. Synthesis, Phase Composition and Magnetic Properties of Double Perovskites of A(FeM)O4-x Type (A=Ce; M=Ti). Ceram. Int. 2019, 45, 8669–8676. [Google Scholar] [CrossRef]
- Zubar, T.; Fedosyuk, V.; Trukhanov, A.; Kovaleva, N.; Astapovich, K.; Vinnik, D.; Trukhanova, E.; Kozlovskiy, A.; Zdorovets, M.; Solobai, A.; et al. Control of Growth Mechanism of Electrodeposited Nanocrystalline NiFe Films. J. Electrochem. Soc. 2019, 166, D173–D180. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Kenzhina, I.E.; Zdorovets, M.V. FeCo– Fe2CoO4/Co3O4 Nanocomposites: Phase transformations as a result of thermal annealing and practical application in catalysis. Ceram. Int. 2020, 46, 10262–10269. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Pollard, R.J. Fine-Particle Magnetic Oxides. J. Phys. Condens. Matter 1993, 5, 8487–8508. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, F.; Shao, J.; Huang, D.; He, H.; Trukhanov, A.; Trukhanov, S. Influence of Nd-NbZn Co-Substitution on Structural, Spectral and Magnetic Properties of M-Type Calcium-Strontium Hexaferrites Ca0.4Sr0.6-xNdxFe12.0-x(Nb0.5Zn0.5)xO19. J. Alloys Compd. 2018, 765, 616–623. [Google Scholar] [CrossRef]
- Narang, S.B.; Hudiara, I.S. Microwave Dielectric Properties of M-Type Barium, Calcium and Strontium Hexaferrite Substituted with Co and Ti. J. Ceram. Process. Res. 2006, 7, 113–116. [Google Scholar]
- Kozlovskiy, A.L.; Zdorovets, M.V. The Study of the Structural Characteristics and Catalytic Activity of Co/CoCo2O4 Nanowires. Compos. Part B Eng. 2020, 191, 107968. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Korolkov, I.V.; Kozlovskiy, A.L.; Anisovich, M.; Vinnik, D.A.; Ermekova, A.E.; Vorobjova, A.I.; Shumskaya, E.E.; Zubar, T.I.; Trukhanov, S.V.; et al. Immobilization of Boron-Rich Compound on Fe3O4 Nanoparticles: Stability and Cytotoxicity. J. Alloys Compd. 2019, 797, 573–581. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Trukhanov, A.V.; Khan, F.A.; Slimani, Y.; Tashkandi, N.; Turchenko, V.A.; Zubar, T.I.; Tishkevich, D.I.; Trukhanov, S.V.; Panina, L.V.; et al. Correlation between Microstructure Parameters and Anti-Cancer Activity of the [Mn0.5Zn0.5](EuxNdxFe2-2x)O4 Nanoferrites Produced by Modified Sol-Gel and Ultrasonic Methods. Ceram. Int. 2020, 46, 7346–7354. [Google Scholar] [CrossRef]
- Algarou, N.A.; Slimani, Y.; Almessiere, M.A.; Rehman, S.; Younas, M.; Unal, B.; Korkmaz, A.D.; Gondal, M.A.; Trukhanov, A.V.; Baykal, A.; et al. Developing the Magnetic, Dielectric and Anticandidal Characteristics of SrFe12O19/(Mg0.5Cd0.5Dy0.03Fe1.97O4)x Hard/Soft Ferrite Nanocomposites. J. Taiwan Inst. Chem. Eng. 2020, 113, 344–362. [Google Scholar] [CrossRef]
- Kumar, A.; Agarwala, V.; Singh, D. Effect of particle size of BaFe12O19 on the microwave absorption characteristics in X-band. Prog. Electromagn. Res. 2013, 29, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Harris, V.G.; Chen, Z.; Chen, Y.; Yoon, S.; Sakai, T.; Gieler, A.; Yang, A.; He, Y.; Ziemer, K.S.; Sun, N.X.; et al. Ba-Hexaferrite Films for next Generation Microwave Devices (Invited). J. Appl. Phys. 2006, 99, 08M911. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Slimani, Y.; Güngüneş, H.; Kostishyn, V.G.; Trukhanov, S.V.; Trukhanov, A.V.; Baykal, A. Impact of Eu3+ Ion Substitution on Structural, Magnetic and Microwave Traits of Ni–Cu–Zn Spinel Ferrites. Ceram. Int. 2020, 46, 11124–11131. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Klygach, D.S.; Zhivulin, V.E.; Malkin, A.I.; Vakhitov, M.G.; Gudkova, S.A.; Galimov, D.M.; Zherebtsov, D.A.; Trofimov, E.A.; Knyazev, N.S.; et al. Electromagnetic Properties of BaFe12O19:Ti at Centimeter Wavelengths. J. Alloys Compd. 2018, 755, 177–183. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Szymczak, H.; Botez, C.E.; Adair, A. Magnetotransport properties and mechanism of the a-site ordering in the Nd-Ba optimal-doped manganites. J. Low Temp. Phys. 2007, 149, 185–199. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Fedotova, V.V.; Trukhanov, A.V.; Stepin, S.G.; Szymczak, H. Synthesis and structure of nanocrystalline La0.50Ba0.50MnO3. Crystallogr. Rep. 2008, 53, 1177–1180. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Vasil’ev, A.N.; Maignan, A.; Szymczak, H. Critical behavior of La0.825Sr0.175MnO2.912 anion-deficient manganite in the magnetic phase transition region. JETP Lett. 2007, 85, 507–512. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Lobanovski, L.S.; Bushinsky, M.V.; Fedotova, V.V.; Troyanchuk, I.O.; Trukhanov, A.V.; Ryzhov, V.A.; Szymczak, H.; Szymczak, R.; Baran, M. Study of a-site ordered PrBaMn2O6-δ manganites depending on the treatment conditions. J. Phys. Condens. Matter 2005, 17, 6495–6506. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Szymczak, H. Effect of magnetic fields on magnetic phase separation in anion-deficient manganite La0.70Sr0.30MnO2.85. Low Temp. Phys. 2011, 37, 465–469. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh Ranganathan, J.W.; Bhattacharjee, S. High-Entropy Alloys, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; 388p. [Google Scholar]
- Gao, M.C.; Yeh, J.W.; Liaw, P.K.; Zhang, Y. High-Entropy Alloys: Fundamentals and Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; 524p. [Google Scholar]
- Rost, C.M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E.C.; Hou, D.; Jones, J.L.; Curtarolo, S.; Maria, J.-P. Entropy-Stabilized Oxides. Nat. Commun. 2015, 6, 8485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, A.; Breitung, B.; Hahn, H. High Entropy Oxides: The Role of Entropy, Enthalpy and Synergy. Scr. Mater. 2020, 187, 43–48. [Google Scholar] [CrossRef]
- Chen, L.; Wang, K.; Su, W.; Zhang, W.; Xu, C.; Wang, Y.; Zhou, Y. Research Progress of Transition Metal Non-Oxide High-Entropy Ceramics. J. Inorg. Mater. 2020, 35, 748–758. [Google Scholar]
- Sarkar, A.; Djenadic, R.; Usharani, N.J.; Sanghvi, K.P.; Chakravadhanula, V.S.K.; Gandhi, A.S.; Hahn, H.; Bhattacharya, S.S. Nanocrystalline Multicomponent Entropy Stabilised Transition Metal Oxides. J. Eur. Ceram. Soc. 2017, 37, 747–754. [Google Scholar] [CrossRef]
- Bérardan, D.; Franger, S.; Meena, A.K.; Dragoe, N. Room Temperature Lithium Superionic Conductivity in High Entropy Oxides. J. Mater. Chem. A 2016, 4, 9536–9541. [Google Scholar] [CrossRef] [Green Version]
- Rak, Z.; Rost, C.M.; Lim, M.; Sarker, P.; Toher, C.; Curtarolo, S.; Maria, J.-P.; Brenner, D.W. Charge Compensation and Electrostatic Transferability in Three Entropy-Stabilized Oxides: Results from Density Functional Theory Calculations. J. Appl. Phys. 2016, 120, 95105. [Google Scholar] [CrossRef]
- Rost, C.M.; Rak, Z.; Brenner, D.W.; Maria, J. Local Structure of the MgxNixCoxCuxZnxO (X = 0.2) Entropy-stabilized Oxide: An EXAFS Study. J. Am. Ceram. Soc. 2017, 100, 2732–2738. [Google Scholar] [CrossRef]
- Berardan, D.; Meena, A.K.; Franger, S.; Herrero, C.; Dragoe, N. Controlled Jahn-Teller Distortion in (MgCoNiCuZn)O-Based High Entropy Oxides. J. Alloys Compd. 2017, 704, 693–700. [Google Scholar] [CrossRef]
- Sarkar, A.; Loho, C.; Velasco, L.; Thomas, T.; Bhattacharya, S.S.; Hahn, H.; Djenadic, R. Multicomponent Equiatomic Rare Earth Oxides with a Narrow Band Gap and Associated Praseodymium Multivalency. Dalt. Trans. 2017, 46, 12167–12176. [Google Scholar] [CrossRef] [PubMed]
- Djenadic, R.; Sarkar, A.; Clemens, O.; Loho, C.; Botros, M.; Chakravadhanula, V.S.K.; Kübel, C.; Bhattacharya, S.S.; Gandhi, A.S.; Hahn, H. Multicomponent Equiatomic Rare Earth Oxides. Mater. Res. Lett. 2017, 5, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Meng, X.; Xu, J.; Zhang, P.; Lou, Z.; Reece, M.J.; Gao, F. Ultra-Low Thermal Conductivity and Enhanced Mechanical Properties of High-Entropy Rare Earth Niobates (RE3NbO7, RE = Dy, Y, Ho, Er, Yb). J. Eur. Ceram. Soc. 2021, 41, 1052–1057. [Google Scholar] [CrossRef]
- Zhou, L.; Li, F.; Liu, J.-X.; Hu, Q.; Bao, W.; Wu, Y.; Cao, X.; Xu, F.; Zhang, G.-J. High-Entropy Thermal Barrier Coating of Rare-Earth Zirconate: A Case Study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 Prepared by Atmospheric Plasma Spraying. J. Eur. Ceram. Soc. 2020, 40, 5731–5739. [Google Scholar] [CrossRef]
- Zhao, Z.; Xiang, H.; Chen, H.; Dai, F.-Z.; Wang, X.; Peng, Z.; Zhou, Y. High-Entropy (Nd0.2Sm0.2Eu0.2Y0.2Yb0.2)4Al2O9 with Good High Temperature Stability, Low Thermal Conductivity, and Anisotropic Thermal Expansivity. J. Adv. Ceram. 2020, 9, 595–605. [Google Scholar] [CrossRef]
- Liu, J.; Ren, K.; Ma, C.; Du, H.; Wang, Y. Dielectric and Energy Storage Properties of Flash-Sintered High-Entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 Ceramic. Ceram. Int. 2020, 46, 20576–20581. [Google Scholar] [CrossRef]
- Chen, H.; Xiang, H.; Dai, F.-Z.; Liu, J.; Zhou, Y. High Entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with Strong Anisotropy in Thermal Expansion. J. Mater. Sci. Technol. 2020, 36, 134–139. [Google Scholar] [CrossRef]
- Dąbrowa, J.; Stygar, M.; Mikuła, A.; Knapik, A.; Mroczka, K.; Tejchman, W.; Danielewski, M.; Martin, M. Synthesis and Microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 High Entropy Oxide Characterized by Spinel Structure. Mater. Lett. 2018, 216, 32–36. [Google Scholar] [CrossRef]
- Mao, A.; Xiang, H.-Z.; Zhang, Z.-G.; Kuramoto, K.; Zhang, H.; Jia, Y. A New Class of Spinel High-Entropy Oxides with Controllable Magnetic Properties. J. Magn. Magn. Mater. 2020, 497, 165884. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, T.; Gild, J.; Zhou, N.; Nie, J.; Qin, M.; Harrington, T.; Vecchio, K.; Luo, J. A New Class of High-Entropy Perovskite Oxides. Scr. Mater. 2018, 142, 116–120. [Google Scholar] [CrossRef]
- Sarkar, A.; Djenadic, R.; Wang, D.; Hein, C.; Kautenburger, R.; Clemens, O.; Hahn, H. Rare Earth and Transition Metal Based Entropy Stabilised Perovskite Type Oxides. J. Eur. Ceram. Soc. 2018, 38, 2318–2327. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Trofimov, A.E.; Zhivulin, V.E.; Gudkova, S.A.; Zaitseva, O.V.; Zherebtsov, D.A.; Starikov, A.Y.; Sherstyuk, D.P.; Amirov, A.A.; Kalgin, A.V.; et al. High Entropy Oxide Phases with Perovskite Structure. Nanomaterials 2020, 10, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Pu, Y.; Zhang, Q.; Shi, R.; Guo, X.; Wang, W.; Ji, J.; Wei, T.; Ouyang, T. Microstructure and Dielectric Properties of High Entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 Perovskite Oxides. Ceram. Int. 2020, 46, 7430–7437. [Google Scholar] [CrossRef]
- Moualhi, Y.; Rahmouni, H.; Gassoumi, M.; Khirouni, K. Summerfield scaling model and conduction processes defining the transport properties of silver substituted half doped (La–Ca)MnO3 ceramic. Ceram. Int. 2020, 46, 24710–24717. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Bushinsky, M.V.; Troyanchuk, I.O.; Szymczak, H. Magnetic ordering in La1–xSrxMnO3–x/2 anion-deficient manganites. J. Exp. Theor. Phys. 2004, 99, 756–765. [Google Scholar] [CrossRef]
- Matsumoto, G. Study of (La1-xCax)MnO3. I. Magnetic structure of LaMnO3. J. Phys. Soc. Jpn. 1970, 29, 606–615. [Google Scholar] [CrossRef]
- Dzialoshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91–98. [Google Scholar] [CrossRef]
- Lee, W.-Y.; Yun, H.J.; Yoon, J.-W. Characterization and magnetic properties of LaFeO3 nanofibers synthesized by electrospinning. J. Alloys Compd. 2014, 583, 320–324. [Google Scholar] [CrossRef]
- Treves, D. Studies on orthoferrites at the weizmann institute of science. J. Appl. Phys. 1965, 36, 1033–1039. [Google Scholar] [CrossRef]
- Troyanchuk, I.O.; Khalyavin, D.D.; Trukhanov, S.V.; Szymczak, H. Magnetic phase diagrams of the manganites Ln1-xBaxMnO3 (Ln = Nd, Sm). J. Phys. Condens. Matter 1999, 11, 8707–8717. [Google Scholar] [CrossRef]
- Hemberger, J.; Brando, M.; Wehn, R.; Ivanov, Y.V.; Mukhin, A.A.; Balbashov, A.M.; Loidl, A. Magnetic properties and specific heat of RMnO3 (R = Pr, Nd). Phys. Rev. B 2004, 69, 064418. [Google Scholar] [CrossRef]
- Trukhanov, S.V. Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3-γ (0 ≤ γ ≤ 0.25). J. Exp. Theor. Phys. 2005, 100, 95–105. [Google Scholar] [CrossRef]
- Bean, C.P.; Livingstone, J.D. Superparamagnetism. J. Appl. Phys. 1959, 30, S120–S129. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Vasiliev, A.N.; Balagurov, A.M.; Szymczak, H. Magnetic state of the structural separated anion-deficient La0.70Sr0.30MnO2.85 manganite. J. Exp. Theor. Phys. 2011, 113, 819–825. [Google Scholar] [CrossRef]
- Cui, C.; Tyson, T.A. Correlations between pressure and bandwidth effects in metal–insulator transitions in manganites. Appl. Phys. Lett. 2004, 84, 942–944. [Google Scholar] [CrossRef] [Green Version]
- Urushibara, A.; Moritomo, Y.; Arima, T.; Asamitsu, A.; Kido, G.; Tokura, Y. Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys. Rev. B 1995, 51, 14103. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.Y.; Palstra, T.T.M.; Cheong, S.-W.; Batlogg, B. Pressure effects on the magnetoresistance in doped manganese perovskites. Phys. Rev. B 1995, 52, 15046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Teresa, J.M.; Ibarra, M.R.; Garcia, J.; Blasco, J.; Ritter, C.; Algarabel, P.A.; Marquina, C.; del Moral, A. Spin-glass insulator state in (Tb-La)2/3Ca1/3MnO3 perovskite. Phys. Rev. Lett. 1996, 76, 3392. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Cheng, Z.; Wang, J.; Wang, X.; Dou, S. Positive and negative exchange bias effects in the simple perovskite manganite NdMnO3. Appl. Phys. Lett. 2012, 101, 102411. [Google Scholar] [CrossRef]
- Muñoz, A.; Alonso, J.A.; Martìnez-Lope, M.J.; García-Muñoz, J.L.; Fernández-Díaz, M.T. Magnetic structure evolution of NdMnO3 derived from neutron diffraction data. J. Phys. Condens. Matter 2000, 12, 1361–1376. [Google Scholar] [CrossRef]
- Shim, H.; Sakamoto, K.; Inomata, N.; Toda, M.; Toan, N.V.; Ono, T. Magnetostrictive Performance of Electrodeposited TbxDy(1−x)Fey Thin Film with Microcantilever Structures. Micromachines 2020, 11, 523. [Google Scholar] [CrossRef]
- Meiyong, L. Progress in semiconductor diamond photodetectors and MEMS sensors. Funct. Diam. 2021, 1, 29–46. [Google Scholar]
Formula | Cr | Mn | Fe | Co | Ni | La/Nd |
---|---|---|---|---|---|---|
La-CMFCNO | ||||||
Calculated | La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 | |||||
at. % | 4.85 + 0.3 | 4.44 + 0.5 | 4.09 + 0.3 | 3.44 + 0.4 | 3.52 + 0.3 | La-20.4 + 0.7 |
Real | La1.04(Cr0.22Mn0.21Fe0.18Co0.17Ni0.19)O3 | |||||
Nd-CMFCNO | ||||||
Calculated | Nd(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 | |||||
at. % | 4.23 + 0.5 | 4.07 + 0.4 | 3.88 + 0.6 | 3.71 + 0.4 | 3.64 + 0.3 | Nd-19.92 + 0.8 |
Real | Nd1.01(Cr0.21Mn0.21Fe0.21Co0.19Ni0.18)O3 | |||||
LN-CMFCNO | ||||||
Calculated | [La0.5Nd0.5](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 | |||||
at. % | 4.02 + 0.6 | 4.02 + 0.5 | 3.97 + 0.5 | 3.87 + 0.5 | 4.03 + 0.4 | La-10.36 + 0.8Nd-9.56 + 0.8 |
Real | [La0.53Nd0.48](Cr0.21Mn0.20Fe0.19Co0.19Ni0.2)O3 |
La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3—SG: R-3c | |||||||||
---|---|---|---|---|---|---|---|---|---|
Lattice parameters and relevance factors | |||||||||
a | b | c | χ2 | Rp | Rwp | Rexp | |||
5.4977 + 0.0009 | 5.4977 + 0.0009 | 13.3801 + 0.0029 | 2.89 | 6.94 | 9.69 | 8.94 | |||
Atomic coordination | |||||||||
O1 | 0.4542 | 0.0000 | 0.2500 | ||||||
La | 0.0000 | 0.0000 | 0.2500 | ||||||
Mn | 0.0000 | 0.0000 | 0.0000 | ||||||
Cr | 0.0000 | 0.0000 | 0.0000 | ||||||
Fe | 0.0000 | 0.0000 | 0.0000 | ||||||
Co | 0.0000 | 0.0000 | 0.0000 | ||||||
Ni | 0.0000 | 0.0000 | 0.0000 | ||||||
Nd(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3—SG: Pnma | |||||||||
Lattice parameters and relevance factors | |||||||||
a | b | c | χ2 | Rp | Rwp | Rexp | |||
5.4739 + 0.0013 | 7.6694 + 0.0019 | 5.4076 + 0.0014 | 2.73 | 6.99 | 9.5 | 5.75 | |||
Atomic coordination | |||||||||
O1 | 0.1934 | 0.0380 | 0.2900 | ||||||
O2 | 0.5139 | 0.2500 | 0.5566 | ||||||
Nd | 0.4579 | 0.2500 | 0.0100 | ||||||
Mn | 0.0000 | 0.0000 | 0.0000 | ||||||
Cr | 0.0000 | 0.0000 | 0.0000 | ||||||
Fe | 0.0000 | 0.0000 | 0.0000 | ||||||
Co | 0.0000 | 0.0000 | 0.0000 | ||||||
Ni | 0.0000 | 0.0000 | 0.0000 | ||||||
[La0.5Nd0.5](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3—SG: Pnma | |||||||||
Lattice parameters and relevance factors | |||||||||
a | b | c | χ2 | Rp | Rwp | Rexp | |||
5.4712 + 0.0023 | 7.7072 + 0.003 | 5.4548 + 0.0023 | 2.18 | 8.03 | 11.1 | 11.76 | |||
Atomic coordination | |||||||||
x | y | z | |||||||
O1 | 0.2105 | 0.0375 | 0.2771 | ||||||
O2 | 0.5056 | 0.2500 | 0.5774 | ||||||
La | 0.4679 | 0.2500 | 0.0060 | ||||||
Nd | 0.4679 | 0.2500 | 0.0060 | ||||||
Mn | 0.0000 | 0.0000 | 0.0000 | ||||||
Cr | 0.0000 | 0.0000 | 0.0000 | ||||||
Fe | 0.0000 | 0.0000 | 0.0000 | ||||||
Co | 0.0000 | 0.0000 | 0.0000 | ||||||
Ni | 0.0000 | 0.0000 | 0.0000 |
Temperature Range | Activation Energy, EA meV |
---|---|
46.7 | |
156.5 | |
122.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhivulin, V.E.; Trofimov, E.A.; Gudkova, S.A.; Pashkeev, I.Y.; Punda, A.Y.; Gavrilyak, M.; Zaitseva, O.V.; Taskaev, S.V.; Podgornov, F.V.; Darwish, M.A.; et al. Polysubstituted High-Entropy [LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskites: Correlation of the Electrical and Magnetic Properties. Nanomaterials 2021, 11, 1014. https://doi.org/10.3390/nano11041014
Zhivulin VE, Trofimov EA, Gudkova SA, Pashkeev IY, Punda AY, Gavrilyak M, Zaitseva OV, Taskaev SV, Podgornov FV, Darwish MA, et al. Polysubstituted High-Entropy [LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskites: Correlation of the Electrical and Magnetic Properties. Nanomaterials. 2021; 11(4):1014. https://doi.org/10.3390/nano11041014
Chicago/Turabian StyleZhivulin, Vladimir E., Evgeniy A. Trofimov, Svetlana A. Gudkova, Igor Yu. Pashkeev, Alexander Yu. Punda, Maksim Gavrilyak, Olga V. Zaitseva, Sergey V. Taskaev, Fedor V. Podgornov, Moustafa A. Darwish, and et al. 2021. "Polysubstituted High-Entropy [LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskites: Correlation of the Electrical and Magnetic Properties" Nanomaterials 11, no. 4: 1014. https://doi.org/10.3390/nano11041014
APA StyleZhivulin, V. E., Trofimov, E. A., Gudkova, S. A., Pashkeev, I. Y., Punda, A. Y., Gavrilyak, M., Zaitseva, O. V., Taskaev, S. V., Podgornov, F. V., Darwish, M. A., Almessiere, M. A., Slimani, Y., Baykal, A., Trukhanov, S. V., Trukhanov, A. V., & Vinnik, D. A. (2021). Polysubstituted High-Entropy [LaNd](Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 Perovskites: Correlation of the Electrical and Magnetic Properties. Nanomaterials, 11(4), 1014. https://doi.org/10.3390/nano11041014