Enhanced Removal of Sulfonated Lignite from Oil Wastewater with Multidimensional MgAl-LDH Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MgAl-LDH Nanoparticles
2.3. Characterization of Materials
2.4. Adsorption Experiments
3. Results and Discussion
3.1. Structural Characterization of MgAl-LDH Nanoparticles
3.2. Adsorption Performance
3.2.1. Effect of Different Adsorbents
3.2.2. Effect of Absorbent Dosage
3.2.3. Effect of Initial Solution pH
3.2.4. Kinetic Studies
3.2.5. Adsorption Isotherm
3.2.6. Thermodynamic Studies
3.3. Regeneration of Adsorbent
3.4. Adsorption Mechanism of Hierarchical MgAl-LDH
3.5. Comparison of Different Adsorbents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Y.; Liu, H.; Zhou, L.; Ren, H.; Li, H.; Zhang, J.; Chen, G.; Qu, C. Enhanced Fenton-like oxidation of hydroxypropyl guar gum catalyzed by EDTA-metal complexes in a wide pH range. Water Sci. Technol. 2019, 79, 1667–1674. [Google Scholar] [CrossRef]
- Tang, Y.; Ren, H.; Yang, P.; Li, H.; Zhang, J.; Qu, C.; Chen, G. Treatment of fracturing fluid waste by Fenton reaction using transition metal complexes catalyzes oxidation of hydroxypropyl guar gum at high pH. Environ. Chem. Lett. 2018, 17, 559–564. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, B.; Ma, H. Studies on Chromium (VI) adsorption on sulfonated lignite. Desalination 2010, 255, 61–66. [Google Scholar] [CrossRef]
- Ilg, M.; Plank, J. A novel kind of concrete superplasticizer based on lignite graft copolymers. Cem. Concr. Res. 2016, 79, 123–130. [Google Scholar] [CrossRef]
- Cui, Y.; Jiao, F.; Wei, Q.; Wang, X.; Dong, L. Flotation separation of fluorite from calcite using sulfonated lignite as depressant. Sep. Purif. Technol. 2020, 242, 116698. [Google Scholar] [CrossRef]
- Cunico, P.; Fungaro, D.A.; Magdalena, C.P. Adsorption of reactive black 5 from aqueous solution by zeolite from coal fly ash: Equilibrium and kinetic studies. Periódico Tchê Química 2011, 8, 25–31. [Google Scholar]
- Piri, M.; Sepehr, E.; Rengel, Z. Citric acid decreased and humic acid increased Zn sorption in soils. Geoderma 2019, 341, 39–45. [Google Scholar] [CrossRef]
- Tang, Y.; Li, Z.; Xu, Z.; Zhang, J.; Qu, C.; Zhang, Z. Synthesis of hierarchical MgO based on a cotton template and its adsorption properties for efficient treatment of oilfield wastewater. RSC Adv. 2020, 10, 28695–28704. [Google Scholar] [CrossRef]
- Lorenc-Grabowska, E.; Gryglewicz, G. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons. J. Colloid Interface Sci. 2005, 284, 416–423. [Google Scholar] [CrossRef]
- Tang, Q.J.; Xing, J.T.; Zhao, L.P.; Gao, B.B. Effect of Coal Property and Ratio of Acid to Coal on Ion Exchange Performance of Sulfonated Coal. Adv. Mater. Res. 2013, 807–809, 1493–1496. [Google Scholar] [CrossRef]
- Qin, F.; Shan, X.-Q.; Wei, B. Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 2004, 57, 253–263. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, Z.; Zhang, J.; Zhang, Z.; Tang, Y. Degradation of hydroxypropyl guar gum at wide pH range by a heterogeneous Fenton-like process using bentonite-supported Cu(0). Water Sci. Technol. 2020, 82, 1635–1642. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, L.; Xu, Z.; Zhang, J.; Qu, C.; Zhang, Z. Heterogeneous degradation of oil field additives by Cu (II) complex-activated persulfate oxidation. Environ. Prog. Sustain. Energy 2020, 13562. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, L.; Xue, Y.; Gu, X.; Zhang, J.; Qu, C. Preparation of nanoscale zero-valent metal for catalyzed clean oxidation of hydroxypropyl guar gum at a wide pH range. Desalination Water Treat. 2020, 197, 328–334. [Google Scholar] [CrossRef]
- Song, X.; Wu, Y. Simultaneous Adsorption of Chromium (VI) and Phosphate by Calcined Mg-Al-CO3Layered Double Hydroxides. Bull. Korean Chem. Soc. 2014, 35, 1817–1824. [Google Scholar] [CrossRef] [Green Version]
- Koilraj, P.; Takaki, Y.; Sasaki, K. Adsorption characteristics of arsenate on colloidal nanosheets of layered double hydroxide. Appl. Clay Sci. 2016, 134, 110–119. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, X.; Li, C.; Wang, H.; Wang, L. The role of soft colloidal templates in shape evolution of flower-like MgAl-LDH hierarchical microstructures. RSC Adv. 2015, 5, 29757–29765. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.; Cai, W.; Zhao, R.; Yuan, J. Hierarchically porous NiAl-LDH nanoparticles as highly efficient adsorbent for p-nitrophenol from water. Appl. Surf. Sci. 2015, 349, 897–903. [Google Scholar] [CrossRef]
- Pérez-Ramírez, J.; Abelló, S.; van der Pers, N.M. Memory Effect of Activated Mg–Al Hydrotalcite: In Situ XRD Studies during Decomposition and Gas-Phase Reconstruction. Chem. Eur. J. 2007, 13, 870–878. [Google Scholar] [CrossRef]
- Cai, P.; Zheng, H.; Wang, C.; Ma, H.; Hu, J.; Pu, Y.; Liang, P. Competitive adsorption characteristics of fluoride and phosphate on calcined Mg-Al-CO3 layered double hydroxides. J. Hazard. Mater. 2012, 213–214, 100–108. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Luo, T.; Jia, Y.; Xu, R.-X.; Gao, C.; Zhang, Y.-X.; Liu, J.-H.; Huang, X.-J. Three-dimensional hierarchical flower-like Mg–Al-layered double hydroxides: Highly efficient adsorbents for As(v) and Cr(vi) removal. Nanoscale 2012, 4, 3466–3474. [Google Scholar] [CrossRef]
- Jiao, F.; Yu, J.; Song, H.; Jiang, X.; Yang, H.; Shi, S.; Chen, X.; Yang, W. Excellent adsorption of Acid Flavine 2g by MgAl-mixed metal oxides with magnetic iron oxide. Appl. Clay Sci. 2014, 101, 30–37. [Google Scholar] [CrossRef]
- Slaný, M.; Jankovič, Ľ.; Madejová, J. Structural characterization of organo-montmorillonites prepared from a series of primary alkylamines salts: Mid-IR and near-IR study. Appl. Clay Sci. 2019, 176, 11–20. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, X.; Lin, D.; Chun, Y.; Xu, Q. Preparation of shaped magnesium oxide/carbon catalysts using rice grains as an exotemplate and carbon precursor. Appl. Catal. A Gen. 2013, 460–461, 26–35. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Ou, L. Kinetic, Isotherm, and Thermodynamic Studies of the Adsorption of Methyl Orange from Aqueous Solution by Chitosan/Alumina Composite. J. Chem. Eng. Data 2011, 57, 412–419. [Google Scholar] [CrossRef]
- Doğan, M. Abak, H., Alkan M. Adsorption of Methylene Blue onto Hazelnut Shell: Kinetics, Mechanism and Activation Parameters. J. Hazard. Mater 2008, 164, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, J.J.; Zhou, B.; Awasthi, M.K.; Ali, A.; Zhang, Z.; Gaston, L.A.; Lahori, A.H.; Mahar, A. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios. Sci. Total. Environ. 2016, 559, 121–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Huang, G.; An, C.; Li, H.; Shi, Y. Adsorption behaviours of sulfonated humic acid at fly ash-water interface: Investigation of equilibrium and kinetic characteristics. Can. J. Chem. Eng. 2015, 93, 2043–2050. [Google Scholar] [CrossRef]
- Deng, L.; Shi, Z.; Peng, X. Adsorption of Cr(vi) onto a magnetic CoFe2O4/MgAl-LDH composite and mechanism study. RSC Adv. 2015, 5, 49791–49801. [Google Scholar] [CrossRef]
- Baral, S.S.; Das, S.N.; Rath, P. Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochem. Eng. J. 2006, 31, 216–222. [Google Scholar] [CrossRef]
- Gasser, M.; Mohsen, H.; Aly, H. Humic acid adsorption onto Mg/Fe layered double hydroxide. Colloids Surf. A Physicochem. Eng. Asp. 2008, 331, 195–201. [Google Scholar] [CrossRef]
- Vreysen, S.; Maes, A. Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides. Appl. Clay Sci. 2008, 38, 237–249. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, P.; Wang, J.; Liu, Q.; Huang, R. Adsorption of methyl orange (MO) by Zr (IV)-immobilized cross-linked chitosan/bentonite composite. Int. J. Biol. Macromol. 2015, 81, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Stoller, M.; Pulido, J.M.O.; Di Palma, L.; Ferez, A.M. Membrane process enhancement of 2-phase and 3-phase olive mill wastewater treatment plants by photocatalysis with magnetic-core titanium dioxide nanoparticles. J. Ind. Eng. Chem. 2015, 30, 147–152. [Google Scholar] [CrossRef]
- Keleşoğlu, S.; Kes, M.; Sütçü, L.; Polat, H. Adsorption of Methylene Blue from Aqueous Solution on High Lime Fly Ash: Kinetic, Equilibrium, and Thermodynamic Studies. J. Dispers. Sci. Technol. 2012, 33, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; He, J.; Evans, D.G.; Duan, X. Morphology and size control of Ni–Al layered double hydroxides using chitosan as template. J. Phys. Chem. Solids 2006, 67, 1067–1070. [Google Scholar] [CrossRef]
- Utsev, J.T.; Iwar, R.T.; Ifyalem, K.J. Adsorption of methylene blue from aqueous solution onto delonix regia pod activated carbon: Batch equilibrium isotherm, kinetic and thermodynamic studies. J. Mater. Environ. Sci. 2021, 11, 1058–1078. [Google Scholar]
- Mahmoud, M.R.; Someda, H.H. Mg-Al layered double hydroxide intercalated with sodium lauryl sulfate as a sorbent for 152 + 154Eu from aqueous solutions. J. Radioanal. Nucl. Chem. 2012, 292, 1391–1400. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, L.; Fang, Y.; Zhang, X.; Lyu, M.; Wang, S. The Adsorption of Dextranase onto Mg/Fe-Layered Double Hydroxide: Insight into the Immobilization. Nanomaterials 2018, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- An, C.; Yang, S.; Huang, G.; Zhao, S.; Zhang, P.; Yao, Y. Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: Equilibrium and kinetic adsorption studies. Fuel 2016, 165, 264–271. [Google Scholar] [CrossRef]
Sample | Specific Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
2.8%CB-LDH | 126.31 | 0.3040 | 9.6264 |
LDH | 51.91 | 0.2039 | 15.709 |
Models | Parameters | Concentration (mg/L) | |
---|---|---|---|
100 | 200 | ||
Pseudo-first-order | qe (mg/g) model | 44.09 | 151.11 |
K1 (h−1) | 0.0464 | 0.0481 | |
R2 | 0.952 | 0.948 | |
Pseudo-second-order | qe (mg/g) model | 202.84 | 377.36 |
qe (mg/g) experiment | 199.90 | 358.47 | |
K2 (g/m gh) | 0.0027 | 0.0005 | |
R2 | 0.999 | 0.999 | |
Intra particle diffusion | Ki1 (mg/gh1/2) | 2.0146 | 17.5846 |
R12 | 0.978 | 0.989 | |
Ki2 (mg/gh1/2) | 0.34004 | 8.5827 | |
R22 | 0.989 | 0.997 | |
Kid (mg/gh1/2) | 0.1427 | 0.2736 | |
R32 | 0.664 | 0.640 | |
Liquid film diffusion | Kfd (h−1) | 0.0464 | 0.0481 |
R2 | 0.952 | 0.948 |
Models | Parameters | Temperature | |
---|---|---|---|
298 K | 303 K | ||
Langmuir | qm,cal (mg/g) | 1014.20 | 970.87 |
KL (L/mg) | 0.0421 | 0.0632 | |
R2 | 0.963 | 0967 | |
Freundlich | KF (L/g) | 72.7445 | 94.0373 |
n | 1.6937 | 1.7802 | |
R2 | 0.999 | 0.998 | |
D–R model | Qm (mg/g) | 512.90 | 507.29 |
β (mol2/kJ2) | 3.0781 | 1.5822 | |
R2 | 0.738 | 0.740 |
T (K) | ∆S [J/(mol∙k)] | ∆H [kJ/mol] | ∆G (kJ/mol) | R2 |
---|---|---|---|---|
288 | −51.77 | −22.51 | −7.60 | 0.9999 |
298 | −7.08 | |||
308 | −6.57 |
Adsorbents | The Source of the Sample | Pseudo-Second-Order (qe,cal) | Langmuir Model (qe,cal) | Reference | |
---|---|---|---|---|---|
100 mg/L SL | 200 mg/L SL | ||||
Acid modified Shand fly ash | Shand Power Station | - | 278.97 | 321.84 | [40] |
Boundary Dam Power Station | - | 325.48 | 366.95 | ||
Microwave irradiated modified fly ash | Shand Power Station | - | 52.27 | 92.69 | |
Boundary Dam Power Station | - | 56.08 | 104.53 | ||
Fly ash | Shand Power Station | 156.25 | 250.00 | 285.71 | [28] |
Boundary Dam Power Station | 23.80 | 49.50 | 81.31 | ||
Prepared MgAl-LDH | laboratory | 202.84 | 377.36 | 1014.20 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Slaný, M.; Bai, B.; Du, W.; Qu, C.; Zhang, J.; Tang, Y. Enhanced Removal of Sulfonated Lignite from Oil Wastewater with Multidimensional MgAl-LDH Nanoparticles. Nanomaterials 2021, 11, 861. https://doi.org/10.3390/nano11040861
Zhou L, Slaný M, Bai B, Du W, Qu C, Zhang J, Tang Y. Enhanced Removal of Sulfonated Lignite from Oil Wastewater with Multidimensional MgAl-LDH Nanoparticles. Nanomaterials. 2021; 11(4):861. https://doi.org/10.3390/nano11040861
Chicago/Turabian StyleZhou, Ling, Michal Slaný, Bingbing Bai, Weichao Du, Chengtun Qu, Jie Zhang, and Ying Tang. 2021. "Enhanced Removal of Sulfonated Lignite from Oil Wastewater with Multidimensional MgAl-LDH Nanoparticles" Nanomaterials 11, no. 4: 861. https://doi.org/10.3390/nano11040861
APA StyleZhou, L., Slaný, M., Bai, B., Du, W., Qu, C., Zhang, J., & Tang, Y. (2021). Enhanced Removal of Sulfonated Lignite from Oil Wastewater with Multidimensional MgAl-LDH Nanoparticles. Nanomaterials, 11(4), 861. https://doi.org/10.3390/nano11040861