Thickness-Dependent Band Gap Modification in BaBiO3
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scholder, R.; Ganter, K.W.; Gläser, H.; Merz, G. Über Alkali- und Erdalkalioxobismutate(V). Z. Anorg. Und Allgemeine Chem. 1963, 319, 375. [Google Scholar] [CrossRef]
- Ge, J.; Yin, W.-J.; Yan, Y. Solution-Processed Nb-Substituted BaBiO3 Double Perovskite Thin Films for Photoelectrochemical Water Reduction. Chem. Mater. 2018, 30, 1017. [Google Scholar] [CrossRef]
- Chouhan, A.S.; Athresh, E.; Ranjan, R.; Raghavan, S.; Avasthi, S. BaBiO3: A potential absorber for all-oxide photovoltaics. Mater. Lett. 2018, 210, 218. [Google Scholar] [CrossRef]
- Pei, S.; Jorgensen, J.D.; Dabrowski, B.; Hinks, D.G.; Richards, D.R.; Mitchell, A.W.; Newsam, J.M.; Sinha, S.K.; Vaknin, D.; Jacobson, A.J. Structural phase diagram of the Ba1−xKxBiO3 system. Phys. Rev. B 1990, 41, 4126. [Google Scholar] [CrossRef] [PubMed]
- Baumert, B.A. Barium potassium bismuth oxide: A review. J. Superconduct. 1995, 8, 175. [Google Scholar] [CrossRef]
- Sleight, A.W.; Gillson, J.L.; Bierstedt, P.E. High-temperature superconductivity in the BaPb1−xBixO3 systems. Solid State Commun. 1975, 17, 27. [Google Scholar] [CrossRef]
- Cox, D.E.; Sleight, A.W. Crystal structure of Ba2Bi3+Bi5+O6. Solid State Commun. 1976, 19, 969. [Google Scholar] [CrossRef]
- Tajima, S.; Uchida, S.; Masaki, A.; Takagi, H.; Kitazawa, K.; Tanaka, S.; Katsui, A. Optical study of the metal-semiconductor transition in BaPb1−xBixO3. Phys. Rev. B 1985, 32, 6302. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, G.K.; Remeika, J.P.; Buchanan, D.N.E. Electronic structure of BaPb1−xBixO3. Phys. Rev. B 1982, 26, 2120. [Google Scholar] [CrossRef]
- Lobo, R.P.S.M.; Gervais, F. Bismuth disproportionation in BaBiO3 studied by infrared and visible reflectance spectra. Phys. Rev. B 1995, 52, 13294. [Google Scholar] [CrossRef] [PubMed]
- Tajima, S.; Uchida, S.; Masaki, A.; Takagi, H.; Kitazawa, K.; Tanaka, S.; Sugai, S. Electronic states of BaPb1−xBixO3 in the semiconducting phase investigated by optical measurements. Phys. Rev. B 1987, 35, 696. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Tajima, S.; Takagi, H.; Uchida, S. Optical study of the metal-insulator transition on Ba1−xKxBi03 thin films. Nature 1989, 338, 241. [Google Scholar] [CrossRef]
- Mattheiss, L.F.; Gyorgy, E.M.; Johnson, D.W. Superconductivity above 20 K in the Ba-K-Bi-O system. Phys. Rev. B 1988, 37, 3745. [Google Scholar] [CrossRef] [PubMed]
- Cava, R.J.; Batlogg, B.; Krajewski, J.J.; Farrow, R.; Rupp, L.W.; White, A.E.; Short, K.; Peck, W.F.; Kometani, T. Superconductivity near 30 K without copper: The Ba0.6K0.4BiO3 perovskite. Nature 1988, 332, 814. [Google Scholar] [CrossRef]
- Cox, D.E.; Sleight, A.W. Mixed-valent Ba2Bi3+Bi5+O6: Structure and properties vs. temperature. Acta Crystallogr. Sect. B 1979, 35, 1. [Google Scholar] [CrossRef]
- Franchini, C.; Sanna, A.; Marsman, M.; Kresse, G. Structural, vibrational, and quasiparticle properties of the Peierls semiconductor BaBiO3: A hybrid functional and self-consistent GW + vertex-corrections study. Phys. Rev. B 2010, 81, 085213. [Google Scholar] [CrossRef]
- Mattheiss, L.F.; Hamann, D.R. Electronic- and crystal-structure effects on superconductivity in the BaPb1−xBixO3 system. Phys. Rev. B 1982, 26, 2686. [Google Scholar] [CrossRef]
- Mattheiss, L.F.; Hamann, D.R. Electronic structure of BaPb1−xBixO3. Phys. Rev. B 1983, 28, 4227. [Google Scholar] [CrossRef]
- Korotin, D.; Kukolev, V.; Kozhevnikov, A.V.; Novoselov, D.; Anisimov, V.I. Electronic correlations and crystal structure distortions in BaBiO3. J. Phys. Condens. Matter 2012, 24, 415603. [Google Scholar] [CrossRef]
- Foyevtsova, K.; Khazraie, A.; Elfimov, I.; Sawatzky, G.A. Hybridization effects and bond disproportionation in the bismuth perovskites. Phys. Rev. B 2015, 91, 121114. [Google Scholar] [CrossRef]
- Khazraie, A.; Foyevtsova, K.; Elfimov, I.; Sawatzky, G.A. Oxygen holes and hybridization in the bismuthates. Phys. Rev. B 2018, 97, 075103. [Google Scholar] [CrossRef]
- Dalpian, G.M.; Liu, Q.; Varignon, J.; Bibes, M.; Zunger, A. Bond disproportionation, charge self-regulation, and ligand holes in s–p and in d-electron ABX3 perovskites by density functional theory. Phys. Rev. B 2018, 98, 075135. [Google Scholar] [CrossRef]
- Balandeh, S.; Green, R.J.; Foyevtsova, K.; Chi, S.; Foyevtsov, O.; Li, F.; Sawatzky, G.A. Experimental and theoretical study of the electronic structure of single-crystal BaBiO3. Phys. Rev. B 2017, 96, 165127. [Google Scholar] [CrossRef]
- Plumb, N.C.; Gawryluk, D.J.; Wang, Y.; Ristić, Z.; Park, J.; Lv, B.Q.; Wang, Z.; Matt, C.E.; Xu, N.; Shang, T.; et al. Momentum-Resolved Electronic Structure of the High-Tc Superconductor Parent Compound BaBiO3. Phys. Rev. Lett. 2016, 117, 037002. [Google Scholar] [CrossRef]
- Kim, G.; Neumann, M.; Kim, M.; Le, M.; Kang, T.; Noh, T. Suppression of three-dimensional charge density wave ordering via thickness control. Phys. Rev. Lett. 2015, 115, 226402. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.G.; Kim, R.; Kim, J.; Kim, M.; Kim, T.H.; Lee, S.; Noh, T.W. Anisotropic suppression of octahedral breathing distortion with the fully strained BaBiO3/BaCeO3 heterointerface. APL Mater. 2018, 6, 016107. [Google Scholar] [CrossRef]
- Zapf, M.; Elsässer, S.; Stübinger, M.; Scheiderer, P.; Geurts, J.; Sing, M.; Claessen, R. Structural and stoichiometric modifications in ultrathin epitaxial BaBiO3 films. Phys. Rev. B 2019, 99, 245308. [Google Scholar] [CrossRef]
- Zapf, M.; Stübinger, M.; Kamp, M.; Pfaff, F.; Lubk, A.; Büchner, B.; Sing, M.; Claessen, R. Domain matching epitaxy of BaBiO3 on SrTiO3 with structurally modified interface. Appl. Phys. Lett. 2018, 112, 141601. [Google Scholar] [CrossRef]
- Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A. Stabilization of the perovskite phase in the Y–Bi–O system by using a BaBiO3 buffer layer. Phys. Status Solidi RRL 2019, 13, 1800679. [Google Scholar] [CrossRef]
- Feenstra, R.; Stroscio, J. Tunneling spectroscopy of the GaAs(110) surface. J. Vac. Sci. Technol. B 1987, 5, 923. [Google Scholar] [CrossRef]
- Ebert, P.; Schaafhausen, S.; Lenz, A.; Sabitova, A.; Ivanova, L.; Dahne, M.; Hong, Y.L.; Gwo, S.; Eisele, H. Direct measurement of the band gap and Fermi level position at InN(1120). Appl. Phys. Lett. 2011, 98, 062103. [Google Scholar] [CrossRef]
- Herbert, F.W.; Krishnamoorthy, A.; van Vliet, K.J.; Yildiz, B. Quantification of electronic band gap and surface states on FeS2(100). Surf. Sci. 2013, 618, 53–61. [Google Scholar] [CrossRef]
- Erdman, N.; Warschkow, O.; Asta, M.; Poeppelmeier, K.R.; Ellis, D.E.; Marks, L.D. Surface Structures of SrTiO3 (001): A TiO2-rich Reconstruction with a c(4 × 2) Unit Cell. J. Am. Chem. Soc. 2003, 125, 10050. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.D.; Zegenhagen, J. c(6×2) and c(4×2) reconstruction of SrTiO3(001). Surf. Sci. 1999, 425, 343. [Google Scholar] [CrossRef]
- Castell, M.R. Scanning tunneling microscopy of reconstructions on the SrTiO3(001) surface. Surf. Sci. 2002, 505, 1. [Google Scholar] [CrossRef]
- Ohtomo, A.; Hwang, H. A high-mobility electron gas at the latio3/srtio3 heterointerface. Nature 2004, 427, 423. [Google Scholar] [CrossRef]
- Jin, L.; Zapf, M.; Stübinger, M.; Kamp, M.; Sing, M.; Claessen, R.; Jia, C.L. Atomic-Scale Interface Structure in Domain Matching Epitaxial BaBiO3 Thin Films Grown on SrTiO3 Substrates. Phys. Status Solidi RRL 2020, 14, 2000054. [Google Scholar] [CrossRef]
- Koster, G.; Kropman, B.L.; Rijnders, G.J.H.M.; Blank, D.H.A.; Rogalla, H. Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide. Appl. Phys. Lett. 1998, 73, 2920–2922. [Google Scholar] [CrossRef]
- Wöll, C.; Chiang, S.; Wilson, R.J.; Lippel, P.H. Determination of Atom Positions at Stacking-Fault Dislocations on Au(111). Phys. Rev. B 1989, 39, 7988. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouwmeester, R.L.; Brinkman, A.; Sotthewes, K. Thickness-Dependent Band Gap Modification in BaBiO3. Nanomaterials 2021, 11, 882. https://doi.org/10.3390/nano11040882
Bouwmeester RL, Brinkman A, Sotthewes K. Thickness-Dependent Band Gap Modification in BaBiO3. Nanomaterials. 2021; 11(4):882. https://doi.org/10.3390/nano11040882
Chicago/Turabian StyleBouwmeester, Rosa Luca, Alexander Brinkman, and Kai Sotthewes. 2021. "Thickness-Dependent Band Gap Modification in BaBiO3" Nanomaterials 11, no. 4: 882. https://doi.org/10.3390/nano11040882
APA StyleBouwmeester, R. L., Brinkman, A., & Sotthewes, K. (2021). Thickness-Dependent Band Gap Modification in BaBiO3. Nanomaterials, 11(4), 882. https://doi.org/10.3390/nano11040882