Gold-seeded Lithium Niobate Nanoparticles: Influence of Gold Surface Coverage on Second Harmonic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of LiNbO3 Nanoparticles (LN NPs)
2.3. Polymer Adsorption on LN NPs
2.4. Preparation of Au-Decorated LN NPs (LN@BPEI@AuSeeds NPs)
2.5. Fluorescence Spectroscopy for BPEI Concentration Determination
2.6. X-ray Photoelectron Spectroscopy (XPS)
2.7. Hyper Rayleigh Scattering (HRS) Measurements
2.8. Other Characterization Techniques
3. Results and Discussion
3.1. Synthesis and Characterization of LiNbO3 Nanoparticles (LN NPs)
3.2. Synthesis and Characterization of Au Seeds (AuSeeds)
3.3. BPEI Polymer Surface Modification of LN NPs (LN@BPEI NPs)
3.4. Attaching AuSeeds to BPEI-Modified LN NPs (LN@BPEI@AuSeeds NPs)
3.5. Hyper Rayleigh Scattering of LN@BPEI@AuSeeds NPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lattuada, M.; Hatton, T.A. Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6, 286–308. [Google Scholar] [CrossRef]
- Chatterjee, K.; Sarkar, S.; Rao, K.J.; Paria, S. Core/shell nanoparticles in biomedical applications. Adv. Colloid Interface Sci. 2014, 209, 8–39. [Google Scholar] [CrossRef]
- Purbia, R.; Paria, S. Yolk/shell nanoparticles: Classifications, synthesis, properties, and applications. Nanoscale 2015, 7, 19789–19873. [Google Scholar] [CrossRef]
- Walker, J.M.; Zaleski, J.M. A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis. Nanoscale 2016, 8, 1535–1544. [Google Scholar] [CrossRef]
- Asif, M.; Aziz, A.; Ashraf, G.; Wang, Z.; Wang, J.; Azeem, M.; Chen, X.; Xiao, F.; Liu, H. Facet-Inspired Core–Shell Gold Nanoislands on Metal Oxide Octadecahedral Heterostructures: High Sensing Performance toward Sulfide in Biotic Fluids. ACS Appl. Mater. Interfaces 2018, 10, 36675–36685. [Google Scholar] [CrossRef]
- Lee, D.K.; Song, Y.; Tran, V.T.; Kim, J.; Park, E.Y.; Lee, J. Preparation of concave magnetoplasmonic core-shell supraparticles of gold-coated iron oxide via ion-reducible layer-by-layer method for surface enhanced Raman scattering. J. Colloid Interface Sci. 2017, 499, 54–61. [Google Scholar] [CrossRef]
- Westcott, S.L.; Oldenburg, S.J.; Lee, A.T.R.; Halas, N.J. Formation and Adsorption of Clusters of Gold Nanoparticles onto Functionalized Silica Nanoparticle Surfaces. Langmuir 1998, 14, 5396–5401. [Google Scholar] [CrossRef]
- JoŢca, J.; Harmel, J.; Joanny, L.; Ryzhikov, A.; Kahn, M.L.; Fau, P.; Chaudret, B.; Fajerwerg, K.; Jońca, J. Au/MOx (M = Zn, Ti) nanocomposites as highly efficient catalytic filters for chemical gas sensing at room temperature and in humid atmosphere. Sens. Actuators B Chem. 2017, 249, 357–363. [Google Scholar] [CrossRef]
- Qian, Z.; Hastings, S.P.; Li, C.; Edward, B.; McGinn, C.K.; Engheta, N.; Fakhraai, Z.; Park, S.-J. Raspberry-like Metamolecules Exhibiting Strong Magnetic Resonances. ACS Nano 2015, 9, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Randrianalisoa, J.; Li, X.; Serre, M.; Qin, Z. Understanding the Collective Optical Properties of Complex Plasmonic Vesicles. Adv. Opt. Mater. 2017, 5, 1700403. [Google Scholar] [CrossRef]
- Sánchez-Dena, O.; Villalobos-Mendoza, S.D.; Farías, R.; Fierro-Ruiz, C.D. Lithium Niobate Single Crystals and Powders Reviewed—Part II. Crystals 2020, 10, 990. [Google Scholar] [CrossRef]
- Staedler, D.; Magouroux, T.; Rachid, H.; Joulaud, C.; Extermann, J.; Schwung, S.; Passemard, S.; Kasparian, C.; Clarke, G.; Gerrmann, M.; et al. Harmonic Nanocrystals for Biolabeling: A Survey of Optical Properties and Biocompatibility. ACS Nano 2012, 6, 2542–2549. [Google Scholar] [CrossRef]
- Vuilleumier, J.; Gaulier, G.; De Matos, R.; Mugnier, Y.; Campargue, G.; Wolf, J.-P.; Bonacina, L.; Gerber-Lemaire, S. Photocontrolled Release of the Anticancer Drug Chlorambucil with Caged Harmonic Nanoparticles. Helvetica Chim. Acta 2019, 103, 1900251. [Google Scholar] [CrossRef]
- Campargue, G.; La Volpe, L.; Giardina, G.; Gaulier, G.; Lucarini, F.; Gautschi, I.; Le Dantec, R.; Staedler, D.; Diviani, D.; Mugnier, Y.; et al. Multiorder Nonlinear Mixing in Metal Oxide Nanoparticles. Nano Lett. 2020, 20, 8725–8732. [Google Scholar] [CrossRef]
- Riporto, J.; Urbain, M.; Mugnier, Y.; Multian, V.; Riporto, F.; Bredillet, K.; Beauquis, S.; Galez, C.; Monnier, V.; Chevolot, Y.; et al. Second harmonic spectroscopy of ZnO, BiFeO3 and LiNbO3 nanocrystals. Opt. Mater. Express 2019, 9, 1955–1966. [Google Scholar] [CrossRef] [Green Version]
- Hentschel, M.; Metzger, B.; Knabe, B.; Buse, K.; Giessen, H. Linear and nonlinear optical properties of hybrid metallic–dielectric plasmonic nanoantennas. Beilstein J. Nanotechnol. 2016, 7, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linnenbank, H.; Grynko, Y.; Förstner, J.; Linden, S. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Light. Sci. Appl. 2016, 5, e16013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richter, J.; Steinbrück, A.; Pertsch, T.; Tünnermann, A.; Grange, R. Plasmonic Core–Shell Nanowires for Enhanced Second-Harmonic Generation. Plasmonics 2012, 8, 115–120. [Google Scholar] [CrossRef]
- Mattoli, V.; Farrokhtakin, E.; Ciofani, G.; Puleo, G.L.; De Vito, G.; Filippeschi, C.; Mazzolai, B.; Piazza, V. Barium titanate core – gold shell nanoparticles for hyperthermia treatments. Int. J. Nanomed. 2013, 8, 2319–2331. [Google Scholar] [CrossRef] [Green Version]
- Richter, J.; Steinbrück, A.; Zilk, M.; Sergeyev, A.; Pertsch, T.; Tünnermann, A.; Grange, R. Core–shell potassium niobate nanowires for enhanced nonlinear optical effects. Nanoscale 2014, 6, 5200–5207. [Google Scholar] [CrossRef]
- Zhang, Y.; Manjavacas, A.; Hogan, N.J.; Zhou, L.; Orozco, C.A.; Dong, L.; Day, J.K.; Nordlander, P.; Halas, N.J. Toward Surface Plasmon-Enhanced Optical Parametric Amplification (SPOPA) with Engineered Nanoparticles: A Nanoscale Tunable Infrared Source. Nano Lett. 2016, 16, 3373–3378. [Google Scholar] [CrossRef]
- Wang, Y.; Barhoumi, A.; Tong, R.; Wang, W.; Ji, T.; Deng, X.; Li, L.; Lyon, S.A.; Reznor, G.; Zurakowski, D.; et al. BaTiO3-core Au-shell nanoparticles for photothermal therapy and bimodal imaging. Acta Biomater. 2018, 72, 287–294. [Google Scholar] [CrossRef]
- Pu, Y.; Grange, R.; Hsieh, C.-L.; Psaltis, D. Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation. Phys. Rev. Lett. 2010, 104, 207402. [Google Scholar] [CrossRef] [PubMed]
- Galletto, P.; Brevet, P.F.; Girault, H.H.; Antoine, R.; Broyer, M. Enhancement of the Second Harmonic Response by Adsorbates on Gold Colloids: The Effect of Aggregation. J. Phys. Chem. B 1999, 103, 8706–8710. [Google Scholar] [CrossRef]
- Indrasekara, A.S.D.S.; Norton, S.J.; Geitner, N.K.; Crawford, B.M.; Wiesner, M.R.; Vo-Dinh, T. Tailoring the Core–Satellite Nanoassembly Architectures by Tuning Internanoparticle Electrostatic Interactions. Langmuir 2018, 34, 14617–14623. [Google Scholar] [CrossRef]
- Bhana, S.; Rai, B.K.; Mishra, S.R.; Wang, Y.; Huang, X. Synthesis and properties of near infrared-absorbing magnetic–optical nanopins. Nanoscale 2012, 4, 4939–4942. [Google Scholar] [CrossRef] [PubMed]
- Neuberg, P.; Kichler, A. Recent Developments in Nucleic Acid Delivery with Polyethylenimines. In Nonviral Vectors for Gene Therapy- Lipid- and Polymer-Based Gene Transfer; Elsevier: Amsterdam, The Netherlands, 2014; Volume 88, pp. 263–288. [Google Scholar]
- Nimesh, S. Chapter 10: Polyethylenimine nanoparticles. In Gene Therapy—Potential Applications of Nanotechnology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 197–223. [Google Scholar]
- Lu, W.; Ling, M.; Jia, M.; Huang, P.; Li, C.; Yan, B. Facile synthesis and characterization of polyethylenimine-coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Mol. Med. Rep. 2014, 9, 1080–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goon, I.Y.; Lai, L.M.H.; Lim, M.; Munroe, P.; Gooding, J.J.; Amal, R. Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chem. Mater. 2009, 21, 673–681. [Google Scholar] [CrossRef]
- Duff, D.G.; Baiker, A.; Edwards, P.P. A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 1993, 9, 2301–2309. [Google Scholar] [CrossRef]
- Urbain, M.; Riporto, F.; Beauquis, S.; Monnier, V.; Marty, J.-C.; Galez, C.; Durand, C.; Chevolot, Y.; Le Dantec, R.; Mugnier, Y. On the Reaction Pathways and Growth Mechanisms of LiNbO3 Nanocrystals from the Non-Aqueous Solvothermal Alkoxide Route. Nanomaterials 2021, 11, 154. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Qian, K.; Bi, X.; Huang, W. Influence of Speciation of Aqueous HAuCl4 on the Synthesis, Structure, and Property of Au Colloids. J. Phys. Chem. C 2009, 113, 6505–6510. [Google Scholar] [CrossRef]
- García-Soto, M.J.; González-Ortega, O. Synthesis of silica-core gold nanoshells and some modifications/variations. Gold Bull. 2016, 49, 111–131. [Google Scholar] [CrossRef]
- Park, S.; Park, M.; Han, P.; Lee, S. Relative Contributions of Experimental Parameters to NIR-Absorption Spectra of Gold Nanoshells. J. Ind. Eng. Chem. 2007, 13, 65–70. [Google Scholar]
- Li, Q.; Zheng, A.J.; Liu, Z. Site-Selective Assemblies of Gold Nanoparticles on an AFM Tip-Defined Silicon Template. Langmuir 2003, 19, 166–171. [Google Scholar] [CrossRef]
- Pei, L.; Mori, K.; Adachi, M. Formation Process of Two-Dimensional Networked Gold Nanowires by Citrate Reduction of AuCl4-and the Shape Stabilization. Langmuir 2004, 20, 7837–7843. [Google Scholar] [CrossRef] [PubMed]
- Curtis, K.A.; Miller, D.; Millard, P.; Basu, S.; Horkay, F.; Chandran, P.L. Unusual Salt and pH Induced Changes in Polyethylenimine Solutions. PLoS ONE 2016, 11, e0158147. [Google Scholar] [CrossRef] [Green Version]
- Alam Khan, F.; Akhtar, S.; Almofty, S.A.; Almohazey, D.; AlOmari, M. FMSP-Nanoparticles Induced Cell Death on Human Breast Adenocarcinoma Cell Line (MCF-7 Cells): Morphometric Analysis. Biomolecules 2018, 8, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenholm, J.M.; Meinander, A.; Peuhu, E.; Niemi, R.; Eriksson, J.E.; Sahlgren, C.C.; Lindén, M. Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells. ACS Nano 2008, 3, 197–206. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, S.; Selvakannan, P.R.; Pasricha, R.; Mandale, A.B.; Sastry, M. Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles. Langmuir 2003, 19, 6277–6282. [Google Scholar] [CrossRef]
- Duboisset, J.; Matar, G.; Russier-Antoine, I.; Benichou, E.; Bachelier, G.; Jonin, C.; Ficheux, D.; Besson, F.; Brevet, P.F. First Hyperpolarizability of the Natural Aromatic Amino Acids Tryptophan, Tyrosine, and Phenylalanine and the Tripeptide Lysine−Tryptophan−Lysine Determined by Hyper-Rayleigh Scattering. J. Phys. Chem. B 2010, 114, 13861–13865. [Google Scholar] [CrossRef]
- De Meulenaere, E.; De Coene, Y.; Russier-Antoine, I.; Vanpraet, L.; Haute, C.V.D.; Thevissen, K.; Baekelandt, V.; Bartic, C.; Hofkens, J.; Brevet, P.-F.; et al. Fluorescence-free First Hyperpolarizability Values of Fluorescent Proteins and Channel Rhodopsins. J. Photochem. Photobiol. A Chem. 2020, 400, 112658. [Google Scholar] [CrossRef]
- Le Dantec, R.; Mugnier, Y.; Djanta, G.; Bonacina, L.; Extermann, J.; Badie, L.; Joulaud, C.; Gerrmann, M.; Rytz, D.; Wolf, J.P.; et al. Ensemble and Individual Characterization of the Nonlinear Optical Properties of ZnO and BaTiO3 Nanocrystals. J. Phys. Chem. C 2011, 115, 15140–15146. [Google Scholar] [CrossRef]
- Kim, E.; Steinbrück, A.; Buscaglia, M.T.; Buscaglia, V.; Pertsch, T.; Grange, R. Second-Harmonic Generation of Single BaTiO3 Nanoparticles down to 22 nm Diameter. ACS Nano 2013, 7, 5343–5349. [Google Scholar] [CrossRef]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Duboisset, J.; Brevet, P.-F. Second-Harmonic Scattering-Defined Topological Classes for Nano-Objects. J. Phys. Chem. C 2019, 123, 25303–25308. [Google Scholar] [CrossRef]
- Hayakawa, T.; Usui, Y.; Bharathi, S.; Nogami, M. Second Harmonic Generation from Coupled Surface-Plasmon Resonances in Self-Assembled Gold-Nanoparticle Monolayers Coated with an Aminosilane. Adv. Mater. 2004, 16, 1408–1412. [Google Scholar] [CrossRef]
Sample Name | Volume of AuSeeds Dispersion (mL) | Volume of H2O (mL) | Final AuSeeds Concentration (NPs/L) | Theoretical AuSeeds:LN Ratio |
---|---|---|---|---|
LN@BPEI@AuSeeds100 | 0.349 | 10.239 | 6.98 × 1015 | 100 |
LN@BPEI@AuSeeds300 | 1.046 | 9.542 | 2.09 × 1016 | 300 |
LN@BPEI@AuSeeds700 | 2.441 | 8.147 | 4.88 × 1016 | 700 |
LN@BPEI@AuSeeds1000 | 3.486 | 7.102 | 6.97 × 1016 | 1000 |
LN@BPEI@AuSeeds2000 | 6.973 | 3.615 | 1.39 × 1017 | 2000 |
LN@BPEI@AuSeeds3000 | 10.459 | 0.129 | 2.09 × 1017 | 3000 |
Sample Name | |
---|---|
AuSeeds | (5.47 ± 3.4) × 10−28 |
LN@BPEI@AuSeeds300 | (0.53 ± 0.2) × 10−24 |
LN@BPEI@AuSeeds1000 | (0.13 ± 0.04) × 10−24 |
LN@BPEI@AuSeeds3000 | (0.14 ± 0.03) × 10−24 |
LN | (0.77 ± 0.14) × 10−24 |
Sample Name | |
---|---|
LN | 0.16 ± 0.01 |
LN@BPEI@AuSeeds100 | 0.2 ± 0.02 |
LN@BPEI@AuSeeds300 | 0.17 ± 0.02 |
LN@BPEI@AuSeeds1000 | 0.18 ± 0.03 |
LN@BPEI@AuSeeds3000 | 0.18 ± 0.03 |
AuSeeds | 0.43 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taitt, R.; Urbain, M.; Behel, Z.; Pablo-Sainz-Ezquerra, A.-M.; Kandybka, I.; Millet, E.; Martinez-Rodriguez, N.; Yeromonahos, C.; Beauquis, S.; Le Dantec, R.; et al. Gold-seeded Lithium Niobate Nanoparticles: Influence of Gold Surface Coverage on Second Harmonic Properties. Nanomaterials 2021, 11, 950. https://doi.org/10.3390/nano11040950
Taitt R, Urbain M, Behel Z, Pablo-Sainz-Ezquerra A-M, Kandybka I, Millet E, Martinez-Rodriguez N, Yeromonahos C, Beauquis S, Le Dantec R, et al. Gold-seeded Lithium Niobate Nanoparticles: Influence of Gold Surface Coverage on Second Harmonic Properties. Nanomaterials. 2021; 11(4):950. https://doi.org/10.3390/nano11040950
Chicago/Turabian StyleTaitt, Rachael, Mathias Urbain, Zacharie Behel, Ana-María Pablo-Sainz-Ezquerra, Iryna Kandybka, Eloïse Millet, Nicolas Martinez-Rodriguez, Christelle Yeromonahos, Sandrine Beauquis, Ronan Le Dantec, and et al. 2021. "Gold-seeded Lithium Niobate Nanoparticles: Influence of Gold Surface Coverage on Second Harmonic Properties" Nanomaterials 11, no. 4: 950. https://doi.org/10.3390/nano11040950
APA StyleTaitt, R., Urbain, M., Behel, Z., Pablo-Sainz-Ezquerra, A. -M., Kandybka, I., Millet, E., Martinez-Rodriguez, N., Yeromonahos, C., Beauquis, S., Le Dantec, R., Mugnier, Y., Brevet, P. -F., Chevolot, Y., & Monnier, V. (2021). Gold-seeded Lithium Niobate Nanoparticles: Influence of Gold Surface Coverage on Second Harmonic Properties. Nanomaterials, 11(4), 950. https://doi.org/10.3390/nano11040950