High-Performance Blue Quantum Dot Light Emitting Diode via Solvent Optimization Strategy for ZnO Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Blue QDs
2.3. Synthesis of Blue ZnO NPs
2.4. Fabrication of QLEDs
2.5. Characterization
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pan, J.; Chen, J.; Huang, Q.; Khan, Q.; Liu, X.; Tao, Z.; Zhang, Z.; Lei, W.; Nathan, A. Size Tunable ZnO Nanoparticles to Enhance Electron Injection in Solution Processed QLEDs. ACS Photonics 2016, 3, 215–222. [Google Scholar] [CrossRef]
- Dai, X.; Deng, Y.; Peng, X.; Jin, Y. Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization. Adv. Mater. 2017, 29, 1607022. [Google Scholar] [CrossRef]
- Shen, H.; Gao, Q.; Zhang, Y.; Lin, Y.; Lin, Q.; Li, Z.; Chen, L.; Zeng, Z.; Li, X.; Jia, Y.; et al. Visible Quantum Dot Light-Emitting Diodes with Simultaneous High Brightness and Efficiency. Nat. Photonics 2019, 13, 192–197. [Google Scholar] [CrossRef]
- Song, J.J.; Wang, O.; Shen, H.B.; Lin, Q.L.; Li, Z.H.; Wang, L.; Zhang, X.T.; Li, L.S. Over 30% External Quantum Efficiency Light-Emitting Diodes by Engineering Quantum Dot-Assisted Energy Level Match for Hole Transport Layer. Adv. Funct. Mater. 2019, 29, 1808377. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Q.; Lin, G.; Zhou, X.; Wu, W.; Yang, X.; Zhang, J.; Li, W. All-Solution Processed Inverted Green Quantum Dot Light-Emitting Diodes with Concurrent High Efficiency and Long Lifetime. Mater. Horiz. 2019, 6, 2009–2015. [Google Scholar] [CrossRef]
- Deng, Y.; Lin, X.; Fang, W.; Di, D.; Wang, L.; Friend, R.H.; Peng, X.; Jin, Y. Deciphering Exciton-Generation Processes in Quantum-Dot Electroluminescence. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.Y.; Ji, W.Y.; Wang, S.P.; Yuan, Q.L.; Kong, Y.C.; Su, S.C.; Ng, K.W.; Tang, Z.K. Solvent Effects on the Interface and Film Integrity of Solution-Processed ZnO Electron Transfer Layers for Quantum Dot Light-Emitting Diodes. ACS Appl. Electron. Mater. 2020, 2, 1074–1080. [Google Scholar] [CrossRef]
- Lee, K.-H.; Lee, J.-H.; Song, W.-S.; Ko, H.; Lee, C.; Lee, J.-H.; Yang, H. Highly Efficient, Color-Pure, Color-Stable Blue Quantum Dot Light-Emitting Devices. ACS Nano 2013, 7, 7295–7302. [Google Scholar] [CrossRef]
- Klimov, V.I.; Mikhailovsky, A.A.; Xu, S.; Malko, A.; Hollingsworth, J.A.; Leatherdale, C.A.; Eisler, H.J.; Bawendi, M.G. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science 2000, 290, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E.H. Ultrasensitive Solution-cast Quantum Dot Photodetectors. Nature 2006, 442, 180–183. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Zhang, J.; Chen, W.; Yang, J.; Wen, X.; Wang, B.; Kobamoto, N.; Yuan, L.; Stride, J.A.; et al. Significant Improvement in the Performance of PbSe Quantum Dot Solar Cell by Introducing a CsPbBr3 Perovskite Colloidal Nanocrystal Back Layer. Adv. Energy Mater. 2017, 7, 1601773. [Google Scholar] [CrossRef]
- Colvin, V.L.; Schlamp, M.C.; Alivisatos, A.P. Light-emitting Diodes Made from Cadmium Selenide Nanocrystals and a Semiconducting Polymer. Nature 1994, 370, 354–357. [Google Scholar] [CrossRef]
- Pan, J.; Wei, C.; Wang, L.; Zhuang, J.; Huang, Q.; Su, W.; Cui, Z.; Nathan, A.; Lei, W.; Chen, J. Boosting the Efficiency of Inverted Quantum Dot Light-Emitting Diodes by Balancing Charge Densities and Suppressing Exciton Quenching Through Band Alignment. Nanoscale 2018, 10, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, Z.-H.; Ding, T.; Wang, N.; Chen, G.; Dang, C.; Demir, H.V.; Sun, X.W. High-Efficiency All-Inorganic Full-Colour Quantum Dot Light-Emitting Diodes. Nano Energy 2018, 46, 229–233. [Google Scholar] [CrossRef]
- Shen, P.; Cao, F.; Wang, H.; Wei, B.; Wang, F.; Sun, X.W.; Yang, X. Solution-Processed Double-Junction Quantum-Dot Light-Emitting Diodes with an EQE of Over 40%. ACS Appl. Mater. Interfaces 2019, 11, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zheng, Y.; Cao, W.; Titov, A.; Hyvonen, J.; MandersJesse, R.; Xue, J.; Holloway, P.H.; Qian, L. High-Efficiency Light-Emitting Devices Based on Quantum Dots with Tailored Nanostructures. Nat. Photonics 2015, 9, 259–266. [Google Scholar] [CrossRef]
- Wang, O.; Wang, L.; Li, Z.H.; Xu, Q.L.; Lin, Q.L.; Wang, H.Z.; Du, Z.L.; Shen, H.B.; Li, L.S. High-Efficiency, Deep Blue ZnCdS/CdxZn1-xS/ZnS Quantum-Dot-Light-Emitting Devices with an EQE Exceeding 18%. Nanoscale 2018, 10, 5650–5657. [Google Scholar] [CrossRef]
- Park, Y.R.; Kim, H.J.; Im, S.; Seo, S.; Shin, K.; Choi, W.K.; Hong, Y.J. Tailoring the Highest Occupied Molecular Orbital Level of Poly(N-vinylcarbazole) Hole Transport Layers in Organic Multilayer Heterojunctions. Appl. Phys. Lett. 2016, 108, 023301. [Google Scholar] [CrossRef]
- Pan, J.; Chen, J.; Huang, Q.; Wang, L.; Lei, W. A Highly Efficient Quantum Dot Light Emitting Diode via Improving the Carrier Balance by Modulating the Hole Transport. RSC Adv. 2017, 7, 43366–43372. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Dai, H.; Zhao, J.; Wang, S.; Sun, X. All-solution Processed Composite Hole Transport Layer for Quantum Dot Light Emitting Diode. Thin Solid Film 2016, 603, 187–192. [Google Scholar] [CrossRef]
- Qian, L.; Zheng, Y.; Xue, J.G.; Holloway, P.H. Stable and Efficient Quantum-Dot Light-emitting Diodes Based on Solution-processed Multilayer Structures. Nat. Photonics 2011, 5, 543–548. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Sun, X.; Chen, S. Inverted Quantum-Dot Light-Emitting Diodes Fabricated by All-Solution Processing. ACS Appl. Mater. Interfaces 2016, 8, 5493–5498. [Google Scholar] [CrossRef] [PubMed]
- Ye Ram, C.; Pil-Gu, K.; Dong Heon, S.; Ji-Hoon, K.; Min-Jae, M.; Jeonghun, S.; Jong-Am, H.; Yongsup, P.; Min Chul, S. Effect of Anode Buffer Layer on the Efficiency of Inverted Quantum-dot Light-emitting Diodes. Appl. Phys. Express 2016, 9, 012103. [Google Scholar]
- Tao, Y.; Yang, C.; Qin, J. Organic Host Materials for Phosphorescent Organic Light-Emitting Diodes. Chem. Soc. Rev. 2011, 40, 2943–2970. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.D.; Kim, D.; Kim, N.; Cho, S.M.; Chae, H. Polymer and Small Molecule Mixture for Organic Hole Transport Layers in Quantum Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2013, 5, 12369–12374. [Google Scholar] [CrossRef] [PubMed]
- Beek, W.J.E.; Wienk, M.M.; Janssen, R.A.J. Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer. Adv. Mater. 2004, 16, 1009–1013. [Google Scholar] [CrossRef]
- Spanhel, L.; Anderson, M.A. Semiconductor Clusters in the Sol-gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated Zinc Oxide Colloids. J. Am. Chem. Soc. 1991, 113, 2826–2833. [Google Scholar] [CrossRef]
- Casey, K.G.; Quitevis, E.L. Effect of Solvent Polarity on Nonradiative Processes in Xanthene Dyes—Rhodamine-B in Normal Alchols. J. Phys. Chem. 1988, 92, 6590–6594. [Google Scholar] [CrossRef]
- Haidekker, M.A.; Brady, T.P.; Lichlyter, D.; Theodorakis, E.A. Effects of Solvent Polarity and Solvent Viscosity on the Fluorescent Properties of Molecular Rotors and Related Probes. Bioorg. Chem. 2005, 33, 415–425. [Google Scholar] [CrossRef]
- Ouyang, J.; Xu, Q.; Chu, C.-W.; Yang, Y.; Li, G.; Shinar, J. On the Mechanism of Conductivity Enhancement in Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) Film through Solvent Treatment. Polymer 2004, 45, 8443–8450. [Google Scholar] [CrossRef]
- Lada, M.; Starink, M.J.; Carrasco, M.; Chen, L.C.; Miskiewicz, P.; Brookes, P.; Obarowska, M.; Smith, D.C. Morphology Control via Dual Solvent Crystallization for High-Mobility Functionalized Pentacene-Blend Thin Film Transistors. J. Mater. Chem. 2011, 21, 11232–11238. [Google Scholar] [CrossRef] [Green Version]
Type of Solvent | VT a (V) | VD b (V) | ηEQE (%) | ηA (cd/A) | ηP (lm/W) | |||
---|---|---|---|---|---|---|---|---|
Peak | @ 103 cd m−2 | Peak | @ 103 cd m−2 | Peak | @ 103 cd m−2 | |||
2-Methoxyethanol | 3.5 | 4.1 | 2.3 | 1.5 | 1.99 | 1.25 | 1.03 | 0.97 |
methanol | 3.6 | 4.3 | 1.1 | 0.8 | 0.92 | 0.7 | 0.55 | 0.52 |
butanol | 3.1 | 3.7 | 3.3 | 2.2 | 3.02 | 2.2 | 2.06 | 1.88 |
ethanol | 3.2 | 3.7 | 3 | 1.6 | 2.67 | 1.6 | 1.75 | 1.35 |
Polarity | Viscosity (mPa·s, 20 °C) | Boling Point (°C) | |
---|---|---|---|
2-methoxyethanol | 5.5 | 1.72 | 124 |
methanol | 6.6 | 0.6 | 65 |
butanol | 3.9 | 2.95 | 117 |
ethanol | 4.3 | 1.2 | 79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wang, L.; Zhao, X.; Shi, Y.; Shi, Y.; Liu, T. High-Performance Blue Quantum Dot Light Emitting Diode via Solvent Optimization Strategy for ZnO Nanoparticles. Nanomaterials 2021, 11, 959. https://doi.org/10.3390/nano11040959
Xu J, Wang L, Zhao X, Shi Y, Shi Y, Liu T. High-Performance Blue Quantum Dot Light Emitting Diode via Solvent Optimization Strategy for ZnO Nanoparticles. Nanomaterials. 2021; 11(4):959. https://doi.org/10.3390/nano11040959
Chicago/Turabian StyleXu, Ji, Lixi Wang, Xueliang Zhao, Yutong Shi, Yongjiao Shi, and Ting Liu. 2021. "High-Performance Blue Quantum Dot Light Emitting Diode via Solvent Optimization Strategy for ZnO Nanoparticles" Nanomaterials 11, no. 4: 959. https://doi.org/10.3390/nano11040959
APA StyleXu, J., Wang, L., Zhao, X., Shi, Y., Shi, Y., & Liu, T. (2021). High-Performance Blue Quantum Dot Light Emitting Diode via Solvent Optimization Strategy for ZnO Nanoparticles. Nanomaterials, 11(4), 959. https://doi.org/10.3390/nano11040959