New Insights on the Conversion Reaction Mechanism in Metal Oxide Electrodes for Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Electrode Thin Film Characterization
3.2. Electrochemical Performance
3.3. Post-Mortem Analysis of the Electrodes
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kang, H.; Liu, Y.; Cao, K.; Zhao, Y.; Jiao, L.; Wang, Y.; Yuan, H. Update on anode materials for Na-ion batteries. J. Mater. Chem. A 2015, 3, 17899–17913. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.S.; Qi, X.; Rong, X.; Li, H.; Huang, X.; Chen, L. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: Towards practical applications. Energy Storage Mater. 2016, 5, 191–197. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.Y.; Lou, X.W.D.; Paik, U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ. Sci. 2016, 9, 2314–2318. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Liang, Q.; Liu, X.; Weng, Q.; Liu, J.; Yang, Y.; Da, Z.; Ding, K.; Bando, Y.; et al. Amorphous phosphorus/nitrogen doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054–2060. [Google Scholar] [CrossRef]
- Ge, P.; Fouletier, M. Electrochemical intercalation of sodium in graphite. Solid State Ion. 1988, 28–30, 1172–1175. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811. [Google Scholar] [CrossRef]
- Asher, R.C. A lamellar compound of sodium and graphite. J. Inorg. Nucl. Chem. 1959, 10, 238–249. [Google Scholar] [CrossRef]
- Zhu, C.; Xu, F.; Min, H.; Huang, Y.; Xia, W.; Wang, Y.; Xu, Q.; Gao, P.; Sun, L. Identifying the conversion mechanism of NiCo2O4 during sodiation–Desodiation cycling by in situ TEM. Adv. Funct. Mater. 2017, 27, 1606163. [Google Scholar] [CrossRef]
- He, Y.; Li, A.; Dong, C.; Li, C.; Xu, L. Mesoporous tin-based oxide nanospheres/reduced graphene composites as advanced anodes for lithium-ion half/full cells and sodium-ion batteries. Chem. Eur. J. 2017, 23, 13724–13733. [Google Scholar] [CrossRef]
- Tang, J.; Ni, S.; Chen, Q.; Han, W.; Yang, X.; Zhang, L. The electrochemical performance of NiO nanowalls/Ni anode in half-cell and full-cell sodium ion batteries. Mater. Lett. 2017, 195, 127–130. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Ye, Y.S.; Chiu, T.M.; Pan, C.J.; Hwang, B.J. Size effect of nickel oxide for lithium ion battery anode. J. Power Sources 2014, 253, 27–34. [Google Scholar] [CrossRef]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Lin, F.; Zhu, Y.; Yu, X.; Li, J.; Lin, R.; Nordlund, D.; Weng, T.C.; Richards, R.M.; Yang, X.Q.; et al. Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation. Nano Lett. 2015, 15, 5755–5763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, P.; Zhang, Z.; Zhao, Y.; Zhang, Y.; Li, L.; Yang, K.; Li, X.; Gu, L. Nickel/cobalt metal-organic framework derived 1D hierarchical NiCo2O4/NiO/carbon nanofibers for advanced sodium storage. Chem. Eng. J. 2019, 364, 123–131. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, P.; Li, L.; Yang, K.; Wang, K.; Liu, S.; Yu, Z. Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries. Chem. Eng. J. 2018, 348, 599–607. [Google Scholar] [CrossRef]
- Sun, W.; Rui, X.; Zhu, J.; Yu, L.; Zhang, Y.; Xu, Z.; Madhavi, S.; Yan, Q. Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage. J. Power Sources 2015, 274, 755–761. [Google Scholar] [CrossRef]
- Wang, B.; Wang, G.; Cheng, X.; Wang, H. Synthesis and electrochemical investigation of core-shell ultrathin NiO nanosheets grown on hollow carbon microspheres composite for high performance lithium and sodium ion batteries. Chem. Eng. J. 2016, 306, 1193–1202. [Google Scholar] [CrossRef]
- Hasa, I.; Verrelli, R.; Hassoun, J. Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery. Electrochim. Acta 2015, 173, 613–618. [Google Scholar] [CrossRef]
- Zou, F.; Chen, Y.M.; Liu, K.; Yu, Z.; Liang, W.; Bhaway, S.M.; Gao, M.; Zhu, Y. Metal organic frameworks derived hierarchical hollow NiO/Ni/Graphene composites for lithium and sodium storage. ACS Nano 2016, 10, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.C.; Zhang, D.M.; Du, L.; Jiang, Q. Hollow Ni–NiO nanoparticles embedded in porous carbon nanosheets as a hybrid anode for sodium ion batteries with an ultra-long cycle life. J. Mater. Chem. 2018, 6, 12663–12671. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, X.; Li, D.; Duanmu, C.; Jiang, J.; Chen, J.; Yu, X.; Dong, P. Flower-like NiO/ZnO hybrid coated with N-doped carbon layer derived from metal-organic hybrid frameworks as novel anode material for high performance sodium-ion batteries. J. Colloid Interface Sci. 2020, 563, 354–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, Y.V.; Huang, S.; Pam, M.E.; Wang, Y.; Ang, L.K.; Shi, Y.; Yang, H.Y. Tailoring NiO nanostructured arrays by sulfate anions for sodium-ion batteries. Small 2018, 14, 1800898. [Google Scholar] [CrossRef] [PubMed]
- López, M.C.; Lavela, P.; Ortiz, G.F.; Tirado, J.L. Transition metal oxide thin films with improved reversibility as negative electrodes for sodium-ion batteries. Electrochem. Commun. 2013, 27, 152–155. [Google Scholar] [CrossRef]
- López, M.C.; Aragón, M.J.; Ortiz, G.F.; Lavela, P.; Alcántara, R.; Tirado, J.L. High Performance Full Sodium-Ion Cell Based on a Nanostructured Transition Metal Oxide as Negative Electrode. Chem. Eur. J. 2015, 21, 14879–14885. [Google Scholar] [CrossRef] [PubMed]
- Demirkan, M.T.; Trahey, L.; Karabacak, T. Low-density silicon thin films for lithium-ion battery anodes. Thin Solid Films 2016, 600, 126–130. [Google Scholar] [CrossRef]
- García-Valenzuela, A.; Alvarez, R.; Rico, V.; Cotrino, J.; González-Elipe, A.R.; Palmero, A. Growth of nanocolumnar porous TiO2 thin films by magnetron sputtering using particle collimators. Surf. Coat. Technol. 2018, 343, 172–177. [Google Scholar] [CrossRef]
- Barranco, A.; Borras, A.; Gonzalez-Elipe, A.R.; Palmero, A. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Prog. Mater. Sci. 2016, 76, 59–153. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Garcia, F.J.; Gil-Rostra, J.; Terriza, A.; González, J.C.; Cotrino, J.; Ferrer, F.J.; González-Elipe, A.R.; Yubero, F. Low refractive index SiOF thin films prepared by reactive magnetron sputtering. Thin Solid Films 2013, 542, 332–337. [Google Scholar] [CrossRef]
- Cano, M.; Garcia-Garcia, F.J.; Rodríguez-Padrón, D.; González-Elipe, A.R.; Giner-Casares, J.J.; Luque, R. Ultrastable CoxSiyOz nanowires by glancing angle deposition with magnetron sputtering as novel electrocatalyst for water oxidation. ChemCatChem 2019, 11, 6111–6115. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.J.; Gil-Rostra, J.; Yubero, F.; Espinós, J.P.; Gonzalez-Elipe, A.R.; Chaboy, J. “In Operando” X-ray Absorption Spectroscopy Analysis of structural changes during electrochemical cycling of WO3 and WxSiyOz amorphous electrochromic thin film cathodes. J. Phys. Chem. C 2014, 119, 644–652. [Google Scholar] [CrossRef]
- Salazar, P.; Garcia-Garcia, F.J.; González-Elipe, A.R. Sensing and biosensing with screen printed electrodes modified with nanostructured nickel oxide thin films prepared by magnetron sputtering at oblique angles. Electrochem. Commun. 2018, 94, 5–8. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.J.; Yubero, F.; Espinós, J.P.; González-Elipe, A.R.; Lambert, R.M. Synthesis, characterization and performance of robust poison-resistant ultrathin film yttria stabilized zirconia–nickel anodes for application in solid electrolyte fuel cells. J. Power Sources 2016, 324, 679–686. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.J.; Mosa, J.; González-Elipe, A.R.; Aparicio, M. Sodium ion storage performance of magnetron sputtered WO3 thin films. Electrochim. Acta 2019, 321, 134669. [Google Scholar] [CrossRef]
- Pauly, N.; Yubero, F.; García-García, F.J.; Tougaard, S. Quantitative analysis of Ni 2p photoemission in NiO and Ni diluted in a SiO2 matrix. Surf. Sci. 2016, 644, 46–52. [Google Scholar] [CrossRef]
- Ulmane, N.M.; Kuzmin, A.; Grabis, J.; Sildos, I.; Pars, M. Raman scattering in nanosized nickel oxide NiO. J. Phys. Conf. Ser. 2007, 93, 012039. [Google Scholar]
- Gandhi, A.C.; Huang, Y.C.; Yang, C.; Chan, T.; Cheng, C.L.; Ma, Y.R.; Wu, S. Growth mechanism and magnon excitation in NiO nanowalls. Nanoscale Res. Lett. 2011, 6, 485. [Google Scholar] [CrossRef] [Green Version]
- Garoufails, C.S.; Barnasas, A.; Stamatelatos, A.; Karoutsos, V.; Grammatikopoulos, S.; Poulopoulos, P.; Baskoutas, S. A study of quantum confinement effects in ultrathin NiO films performed by experiment and theory. Materials 2018, 11, 949. [Google Scholar] [CrossRef] [Green Version]
- Dietz, R.E.; Brinkman, W.F.; Meixner, A.E.; Guggenheim, H.J. Raman scattering by four magnons in NiO and KNiF3. Phys. Rev. Lett. 1971, 27, 814–817. [Google Scholar] [CrossRef]
- Mironova-Ulmane, N.; Kuzmin, A.; Grabis, J.; Sildos, I.; Voronin, V.I.; Berger, I.F.; Kazantsev, V.A. Structural and magnetic properties of nickel oxide nanopowders. Solid State Phenom. 2010, 168–169, 341–344. [Google Scholar] [CrossRef]
- Patel, K.N.; Deshpande, M.P.; Chauhan, K.; Rajput, P.; Sathe, V.; Pandya, S.; Chaki, S.H. Synthesis, structural and photoluminescence properties of nano-crystalline Cu doped NiO. Mater. Res. Express 2017, 4, 105027. [Google Scholar] [CrossRef]
- González-Elipe, A.R.; Holgado, J.P.; Alvarez, R.; Munuera, G. Use of factor analysis and XPS to study defective nickel oxide. J. Phys. Chem. 1992, 96, 3080–3086. [Google Scholar] [CrossRef]
- González-Elipe, A.R.; Alvarez, R.; Holgado, J.P.; Espinós, J.P.; Munuera, G. An XPS study of the Ar+ induced reduction of Ni2+ in NiO and Ni-Si Oxide Systems. Appl. Surf. Sci. 1991, 51, 19–26. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosa, J.; García-García, F.J.; González-Elipe, A.R.; Aparicio, M. New Insights on the Conversion Reaction Mechanism in Metal Oxide Electrodes for Sodium-Ion Batteries. Nanomaterials 2021, 11, 966. https://doi.org/10.3390/nano11040966
Mosa J, García-García FJ, González-Elipe AR, Aparicio M. New Insights on the Conversion Reaction Mechanism in Metal Oxide Electrodes for Sodium-Ion Batteries. Nanomaterials. 2021; 11(4):966. https://doi.org/10.3390/nano11040966
Chicago/Turabian StyleMosa, Jadra, Francisco José García-García, Agustín R. González-Elipe, and Mario Aparicio. 2021. "New Insights on the Conversion Reaction Mechanism in Metal Oxide Electrodes for Sodium-Ion Batteries" Nanomaterials 11, no. 4: 966. https://doi.org/10.3390/nano11040966
APA StyleMosa, J., García-García, F. J., González-Elipe, A. R., & Aparicio, M. (2021). New Insights on the Conversion Reaction Mechanism in Metal Oxide Electrodes for Sodium-Ion Batteries. Nanomaterials, 11(4), 966. https://doi.org/10.3390/nano11040966