Effect of Toluene Addition in an Electric Arc on Morphology, Surface Modification, and Oxidation Behavior of Carbon Nanohorns and Their Sedimentation in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of CNHs
2.2. Oxidation of CNHs
2.3. Preparation of CNH Suspensions
2.4. Instrumental Methods
3. Results and Discussion
3.1. Morphology of CNHs
3.2. Surface Functionalization of CNHs
3.3. Aqueous Suspensions of CNHs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lin, Z.; Iijima, T.; Karthik, P.S.; Yoshida, M.; Hada, M.; Nishikawa, T.; Hayashi, Y. Surface Modification of Carbon Nanohorns by Helium Plasma and Ozone Treatments. Jpn. J. Appl. Phys. 2017, 56, 01AB08. [Google Scholar] [CrossRef] [Green Version]
- Baskakova, K.I.; Sedelnikova, O.V.; Lobiak, E.V.; Plyusnin, P.E.; Bulusheva, L.G.; Okotrub, A.V. Modification of Structure and Conductivity of Nanohorns by Toluene Addition in Carbon arc. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 342–347. [Google Scholar] [CrossRef]
- Cioffi, C.; Campidelli, S.; Brunetti, F.G.; Meneghetti, M.; Prato, M. Functionalisation of Carbon Nanohorns. Chem. Commun. 2006, 2129. [Google Scholar] [CrossRef] [PubMed]
- Pendolino, F. Solvent Effect on Morphology of Pristine Nanohorns. Matters 2016, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sedelnikova, O.V.; Baskakova, K.I.; Gusel’nikov, A.V.; Plyusnin, P.E.; Bulusheva, L.G.; Okotrub, A.V. Percolative Composites with Carbon Nanohorns: Low-Frequency and Ultra-High Frequency Response. Materials 2019, 12, 1848. [Google Scholar] [CrossRef] [Green Version]
- Urita, K.; Seki, S.; Utsumi, S.; Noguchi, D.; Kanoh, H.; Tanaka, H.; Hattori, Y.; Ochiai, Y.; Aoki, N.; Yudasaka, M.; et al. Effects of Gas Adsorption on the Electrical Conductivity of Single-Wall Carbon Nanohorns. Nano Lett. 2006, 6, 1325–1328. [Google Scholar] [CrossRef]
- Murata, K.; Kaneko, K.; Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S. Pore Structure of Single-Wall Carbon Nanohorn Aggregates. Chem. Phys. Lett. 2000, 331, 14–20. [Google Scholar] [CrossRef]
- Utsumi, S.; Miyawaki, J.; Tanaka, H.; Hattori, Y.; Itoi, T.; Ichikuni, N.; Kanoh, H.; Yudasaka, M.; Iijima, S.; Kaneko, K. Opening Mechanism of Internal Nanoporosity of Single-Wall Carbon Nanohorn. J. Phys. Chem. B 2005, 109, 14319–14324. [Google Scholar] [CrossRef]
- Nan, Y.; Li, B.; Song, X.; Sano, N. Optimization of Pore-Opening Condition in Single-Walled Carbon Nanohorns to Achieve High Capacity in Double Layer Capacitor at High Charge-Discharge Rate: Critical Effect of Their Hierarchical Pore Structures. Carbon 2019, 142, 150–155. [Google Scholar] [CrossRef]
- Yuge, R.; Bandow, S.; Nakahara, K.; Yudasaka, M.; Toyama, K.; Yamaguchi, T.; Iijima, S.; Manako, T. Structure and Electronic States of Single-Wall Carbon Nanohorns Prepared Under Nitrogen Atmosphere. Carbon 2014, 75, 322–326. [Google Scholar] [CrossRef]
- Sani, E.; Barison, S.; Pagura, C.; Mercatelli, L.; Sansoni, P.; Fontani, D.; Jafrancesco, D.; Francini, F. Carbon Nanohorns-Based Nanofluids as Direct Sunlight Absorbers. Opt. Express 2010, 18, 5179. [Google Scholar] [CrossRef]
- Trong Tam, N.; Viet Phuong, N.; Hong Khoi, P.; Ngoc Minh, P.; Afrand, M.; Van Trinh, P.; Hung Thang, B.; Żyła, G.; Estellé, P. Carbon Nanomaterial-Based Nanofluids for Direct Thermal Solar Absorption. Nanomaterials 2020, 10, 1199. [Google Scholar] [CrossRef]
- Niu, B.; Xu, W.; Guo, Z.; Zhou, N.; Liu, Y.; Shi, Z.; Lian, Y. Controllable Deposition of Platinum Nanoparticles on Single-Wall Carbon Nanohorns as Catalyst for Direct Methanol Fuel Cells. J. Nanosci. Nanotechnol. 2012, 12, 7376–7381. [Google Scholar] [CrossRef]
- Lodermeyer, F.; Costa, R.D.; Casillas, R.; Kohler, F.T.U.; Wasserscheid, P.; Prato, M.; Guldi, D.M. Carbon Nanohorn-Based Electrolyte for Dye-Sensitized Solar Cells. Energy Environ. Sci. 2015, 8, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Gurova, O.A.; Omelyanchuk, L.V.; Dubatolova, T.D.; Antokhin, E.I.; Eliseev, V.S.; Yushina, I.V.; Okotrub, A.V. Synthesis and Modification of Carbon Nanohorns Structure for Hyperthermic Application. J. Struct. Chem. 2017, 58, 1205–1212. [Google Scholar] [CrossRef]
- Kartel, N.T.; Ivanov, L.V.; Lyapunov, A.N.; Cherkashina, Y.O.; Flahaut, E.; Gurova, O.A.; Okotrub, A.V. Study of Cytotoxicity Performance of Carbon Nanohorns by Method of Spin Probes. Fuller. Nanotub. Carbon Nanostructures 2020, 28, 737–744. [Google Scholar] [CrossRef]
- Kokubun, K.; Matsumura, S.; Yudasaka, M.; Iijima, S.; Shiba, K. Immobilization of a Carbon Nanomaterial-Based Localized Drug-Release System Using a Bispecific Material-Binding Peptide. Int. J. Nanomed. 2018, 13, 1643–1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, S.; Xu, G. Carbon Nanohorns and Their Biomedical Applications. In Nanotechnologies for the Life Sciences; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; Volume 9, ISBN 378 9783527321698. [Google Scholar]
- Hiralal, P.; Wang, H.; Unalan, H.E.; Liu, Y.; Rouvala, M.; Wei, D.; Andrew, P.; Amaratunga, G.A.J. Enhanced Supercapacitors from Hierarchical Carbon Nanotube and Nanohorn Architectures. J. Mater. Chem. 2011, 21, 17810. [Google Scholar] [CrossRef]
- Sedelnikova, O.V.; Fedoseeva, Y.V.; Romanenko, A.I.; Gusel’nikov, A.V.; Vilkov, O.Y.; Maksimovskiy, E.A.; Bychanok, D.S.; Kuzhir, P.P.; Bulusheva, L.G.; Okotrub, A.V. Effect of Boron and Nitrogen Additives on Structure and Transport Properties of Arc-Produced Carbon. Carbon 2019, 143, 660–668. [Google Scholar] [CrossRef]
- Valentini, F.; Ciambella, E.; Boaretto, A.; Rizzitelli, G.; Carbone, M.; Conte, V.; Cataldo, F.; Russo, V.; Casari, C.S.; Chillura-Martino, D.F.; et al. Sensor Properties of Pristine and Functionalized Carbon Nanohorns. Electroanalysis 2016, 28, 2489–2499. [Google Scholar] [CrossRef]
- Cobianu, C.; Serban, B.-C.; Dumbravescu, N.; Buiu, O.; Avramescu, V.; Pachiu, C.; Bita, B.; Bumbac, M.; Nicolescu, C.-M.; Cobianu, C. Organic–Inorganic Ternary Nanohybrids of Single-Walled Carbon Nanohorns for Room Temperature Chemiresistive Ethanol Detection. Nanomaterials 2020, 10, 2552. [Google Scholar] [CrossRef]
- Tagmatarchis, N.; Maigné, A.; Yudasaka, M.; Iijima, S. Functionalization of Carbon Nanohorns with Azomethine Ylides: Towards Solubility Enhancement and Electron-Transfer Processes. Small 2006, 2, 490–494. [Google Scholar] [CrossRef]
- Karfa, P.; De, S.; Majhi, K.C.; Madhuri, R.; Sharma, P.K. Functionalization of Carbon Nanostructures. In Comprehensive Nanoscience and Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 123–144. ISBN 9780128035818. [Google Scholar]
- Yang, C.M.; Noguchi, H.; Murata, K.; Yudasaka, M.; Hashimoto, A.; Iijima, S.; Kaneko, K. Highly Ultramicroporous Single-Walled Carbon Nanohorn Assemblies. Adv. Mater. 2005, 17, 866–870. [Google Scholar] [CrossRef]
- Bekyarova, E.; Murata, K.; Yudasaka, M.; Kasuya, D.; Iijima, S.; Tanaka, H.; Kahoh, H.; Kaneko, K. Single-Wall Nanostructured Carbon for Methane Storage. J. Phys. Chem. B 2003, 107, 4681–4684. [Google Scholar] [CrossRef]
- Bekyarova, E.; Kaneko, K.; Yudasaka, M.; Murata, K.; Kasuya, D.; Iijima, S. Micropore Development and Structure Rearrangement of Single-Wall Carbon Nanohorn Assemblies by Compression. Adv. Mater. 2002, 14, 973–975. [Google Scholar] [CrossRef]
- Bekyarova, E.; Kaneko, K.; Kasuya, D.; Murata, K.; Yudasaka, M.; Iijima, S. Oxidation and Porosity Evaluation of Budlike Single-Wall Carbon Nanohorn Aggregates. Langmuir 2002, 18, 4138–4141. [Google Scholar] [CrossRef]
- Yudasaka, M.; Ichihashi, T.; Kasuya, D.; Kataura, H.; Iijima, S. Structure Changes of Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns Caused by Heat Treatment. Carbon 2003, 41, 1273–1280. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, S.; Wang, C.; Li, J.; Xu, G. Single-Walled Carbon Nanohorns for Energy Applications. Nanomaterials 2015, 5, 1732–1755. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yudasaka, M.; Ajima, K.; Miyawaki, J.; Iijima, S. Light-Assisted Oxidation of Single-Wall Carbon Nanohorns for Abundant Creation of Oxygenated Groups that Enable Chemical Modifications with Proteins to Enhance Biocompatibility. ACS Nano 2007, 1, 265–272. [Google Scholar] [CrossRef]
- Maciejewska, B.M.; Jasiurkowska-Delaporte, M.; Vasylenko, A.I.; Kozioł, K.K.; Jurga, S. Experimental and Theoretical Studies on the Mechanism for Chemical Oxidation of Multiwalled Carbon Nanotubes. RSC Adv. 2014, 4, 28826–28831. [Google Scholar] [CrossRef]
- Okotrub, A.V.; Shevtsov, Y.V.; Nasonova, L.I.; Sinyakov, D.E.; Chuvilin, A.L.; Gutakovskii, A.K.; Mazalov, L.N. Arc-Discharge Synthesis of Single-Shell Carbon Particles. Inorg. Mater. 1996, 32, 858–861. [Google Scholar]
- Shuba, M.V.; Yuko, D.I.; Kuzhir, P.P.; Maksimenko, S.A.; Chigir, G.G.; Pyatlitski, A.N.; Sedelnikova, O.V.; Okotrub, A.V.; Lambin, P. Localized Plasmon Resonance in Boron-Doped Multiwalled Carbon Nanotubes. Phys. Rev. B 2018, 97, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Blume, R.; Rosenthal, D.; Tessonnier, J.P.; Li, H.; Knop-Gericke, A.; Schlögl, R. Characterizing Graphitic Carbon with X-ray Photoelectron Spectroscopy: A Step-by-Step Approach. ChemCatChem 2015, 7, 2871–2881. [Google Scholar] [CrossRef] [Green Version]
- Grillo, I. Dynamic Light Scattering; Pecora, R., Ed.; Springer: Boston, MA, USA, 1985; ISBN 978-1-4612-9459-7. [Google Scholar]
- Iijima, S.; Yudasaka, M.; Yamada, R.; Bandow, S.; Suenaga, K.; Kokai, F.; Takahashi, K. Nano-Aggregates of Single-Walled Graphitic Carbon Nano-Horns. Chem. Phys. Lett. 1999, 309, 165–170. [Google Scholar] [CrossRef]
- Pagura, C.; Barison, S.; Battiston, S.; Schiavon, M. Synthesis and Characterization of Single Wall Carbon Nanohorns Produced By Direct Vaporization of Graphite. Techconnect Briefs 2010, 1, 289–291. [Google Scholar]
- Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Synthesis of Single-Wall Carbon Nanohorns by Arc-Discharge in Air and Their Formation Mechanism. Carbon 2010, 48, 1580–1585. [Google Scholar] [CrossRef]
- Gurova, O.A.; Arhipov, V.E.; Koroteev, V.O.; Guselnikova, T.Y.; Asanov, I.P.; Sedelnikova, O.V.; Okotrub, A.V. Purification of Single-Walled Carbon Nanotubes Using Acid Treatment and Magnetic Separation. Phys. Status Solidi B 2019, 256, 1800742. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Peña-Álvarez, M.; Del Corro, E.; Langa, F.; Baonza, V.G.; Taravillo, M. Morphological Changes in Carbon Nanohorns Under Stress: A Combined Raman Spectroscopy and TEM Study. RSC Adv. 2016, 6, 49543–49550. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Basko, D.M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Yudasaka, M.; Miyawaki, J.; Ajima, K.; Murata, K.; Iijima, S. Control of Hole Opening in Single-Wall Carbon Nanotubes and Single-Wall Carbon Nanohorns Using Oxygen. J. Phys. Chem. B 2006, 110, 1587–1591. [Google Scholar] [CrossRef]
- Zeiger, M.; Jäckel, N.; Mochalin, V.N.; Presser, V. Review: Carbon Onions for Electrochemical Energy Storage. J. Mater. Chem. A 2016, 4, 3172–3196. [Google Scholar] [CrossRef] [Green Version]
- Yuge, R.; Manako, T.; Nakahara, K.; Yasui, M.; Iwasa, S.; Yoshitake, T. The Production of an Electrochemical Capacitor Electrode Using Holey Single-Wall Carbon Nanohorns with High Specific Surface Area. Carbon 2012, 50, 5569–5573. [Google Scholar] [CrossRef]
- Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R.R.; Rousset, A. Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon 2001, 39, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Kobets, A.A.; Iurchenkova, A.A.; Asanov, I.P.; Okotrub, A.V.; Fedorovskaya, E.O. Redox Processes in Reduced Graphite Oxide Decorated by Carboxyl Functional Groups. Phys. Status Solidi B 2019, 256, 1800700. [Google Scholar] [CrossRef]
- Si, Y.; Samulski, E.T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679–1682. [Google Scholar] [CrossRef]
- Smith, R.D. Formation of Radicals and Complex Organic Compounds by High-Temperature Pyrolysis: The Pyrolysis of Toluene. Combust. Flame 1979, 35, 179–190. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Hong, X.; Zhang, K.; Qi, F.; Law, C.K.; Ye, T.; Zhao, P.; Chen, Y. An Experimental and Theoretical Study of Toluene Pyrolysis with Tunable Synchrotron VUV Photoionization and Molecular-Beam Mass Spectrometry. Combust. Flame 2009, 156, 2071–2083. [Google Scholar] [CrossRef]
- Cataldo, F.; García-Hernández, D.A.; Manchado, A. Toluene Pyrolysis in an Electric ARC: Products Analysis. Fuller. Nanotub. Carbon Nanostructures 2019, 27, 469–477. [Google Scholar] [CrossRef]
- Merkulov, A.A.; Ovsyannikov, A.A.; Polak, L.S.; Popov, V.T.; Pustilnikov, V.Y. Initial Stages of Soot Formation in Thermal Pyrolysis of Acetylene. I. Mechanism for Homogeneous Pyrolysis of Acetylene. Plasma Chem. Plasma Process. 1989, 9, 95–104. [Google Scholar] [CrossRef]
- Zhang, G.; Qi, P.; Wang, X.; Lu, Y.; Mann, D.; Li, X.; Dai, H. Hydrogenation and Hydrocarbonation and Etching of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2006, 128, 6026–6027. [Google Scholar] [CrossRef] [Green Version]
- Antonov, V.E.; Bashkin, I.O.; Bazhenov, A.V.; Bulychev, B.M.; Fedotov, V.K.; Fursova, T.N.; Kolesnikov, A.I.; Kulakov, V.I.; Lukashev, R.V.; Matveev, D.V.; et al. Multilayer Graphane Synthesized Under High Hydrogen Pressure. Carbon 2016, 100, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Kim, U.J.; Furtado, C.A.; Liu, X.; Chen, G.; Eklund, P.C. Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2005, 127, 15437–15445. [Google Scholar] [CrossRef]
- Tur, V.A.; Okotrub, A.V.; Shmakov, M.M.; Fedorovskaya, E.O.; Asanov, I.P.; Bulusheva, L.G. Functional Composition and Super-Capacitor Properties of Graphite Oxide Reduced with Hot Sulfuric Acid. Phys. Status Solidi B 2013, 250, 2747–2752. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Zhang, H.; Wang, J.; Du, R.; Li, T.-T.; Qian, J.; Hu, Y.; Huang, S. Methylation-Induced Reversible Metallic-Semiconducting Transition of Single-Walled Carbon Nanotube Arrays for High-Performance Field-Effect Transistors. Nano Lett. 2020, 20, 496–501. [Google Scholar] [CrossRef]
- Utsumi, S.; Honda, H.; Hattori, Y.; Kanoh, H.; Takahashi, K.; Sakai, H.; Abe, M.; Yudasaka, M.; Iijima, S.; Kaneko, K. Direct Evidence on C−C Single Bonding in Single-Wall Carbon Nanohorn Aggregates. J. Phys. Chem. C 2007, 111, 5572–5575. [Google Scholar] [CrossRef]
- Sedelnikova, O.V.; Bulusheva, L.G.; Asanov, I.P.; Yushina, I.V.; Okotrub, A.V. Energy Shift of Collective Electron Excitations in Highly Corrugated Graphitic Nanostructures: Experimental and Theoretical Investigation. Appl. Phys. Lett. 2014, 104, 1–6. [Google Scholar] [CrossRef]
- Fedoseeva, Y.V.; Pozdnyakov, G.A.; Okotrub, A.V.; Kanygin, M.A.; Nastaushev, Y.V.; Vilkov, O.Y.; Bulusheva, L.G. Effect of Substrate Temperature on the Structure of Amorphous Oxygenated Hydrocarbon Films Grown with a Pulsed Supersonic Methane Plasma Flow. Appl. Surf. Sci. 2016, 385, 464–471. [Google Scholar] [CrossRef]
- Bulavchenko, A.I.; Arymbaeva, A.T.; Demidova, M.G.; Popovetskiy, P.S.; Plyusnin, P.E.; Bulavchenko, O.A. Synthesis and Concentration of Organosols of Silver Nanoparticles Stabilized by AOT: Emulsion Versus Microemulsion. Langmuir 2018, 34, 2815–2822. [Google Scholar] [CrossRef]
- Savino, R.; Di Paola, R.; Gattia, D.M.; Marazzi, R.; Antisari, M.V. Self-Rewetting Fluids with Suspended Carbon Nanostructures. J. Nanosci. Nanotechnol. 2011, 11, 8953–8958. [Google Scholar] [CrossRef] [Green Version]
- Sani, E.; Mercatelli, L.; Barison, S.; Pagura, C.; Agresti, F.; Colla, L.; Sansoni, P. Potential of Carbon Nanohorn-Based Suspensions for Solar Thermal Collectors. Sol. Energy Mater. Sol. Cells 2011, 95, 2994–3000. [Google Scholar] [CrossRef]
Sample | Density, g/cm3 | Weight Loss, % | |
---|---|---|---|
400 °C | 500 °C | ||
CNH-0 | 0.26 ± 0.03 | 7 ± 2 | 19 ± 2 |
CNH-2 | 0.14 ± 0.03 | 4 ± 2 | 18 ± 2 |
CNH-8 | 0.56 ± 0.03 | 4 ± 2 | 8 ± 2 |
Sample | Hydrodynamic Diameter, nm | |
---|---|---|
Method of Averaging | ||
by Distribution of Function Intensities | by Number of Particles | |
CNH-0 | 300 ± 20 | 120 ± 50 |
500-CNH-0 | 330 ± 30 | 140 ± 60 |
CNH-8 | 450 ± 30 | 180 ± 100 |
500-CNH-8 | 280 ± 20 | 110 ± 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baskakova, K.I.; Sedelnikova, O.V.; Maksimovskiy, E.A.; Asanov, I.P.; Arymbaeva, A.T.; Bulusheva, L.G.; Okotrub, A.V. Effect of Toluene Addition in an Electric Arc on Morphology, Surface Modification, and Oxidation Behavior of Carbon Nanohorns and Their Sedimentation in Water. Nanomaterials 2021, 11, 992. https://doi.org/10.3390/nano11040992
Baskakova KI, Sedelnikova OV, Maksimovskiy EA, Asanov IP, Arymbaeva AT, Bulusheva LG, Okotrub AV. Effect of Toluene Addition in an Electric Arc on Morphology, Surface Modification, and Oxidation Behavior of Carbon Nanohorns and Their Sedimentation in Water. Nanomaterials. 2021; 11(4):992. https://doi.org/10.3390/nano11040992
Chicago/Turabian StyleBaskakova, Kseniya I., Olga V. Sedelnikova, Evgeniy A. Maksimovskiy, Igor P. Asanov, Aida T. Arymbaeva, Lyubov G. Bulusheva, and Alexander V. Okotrub. 2021. "Effect of Toluene Addition in an Electric Arc on Morphology, Surface Modification, and Oxidation Behavior of Carbon Nanohorns and Their Sedimentation in Water" Nanomaterials 11, no. 4: 992. https://doi.org/10.3390/nano11040992
APA StyleBaskakova, K. I., Sedelnikova, O. V., Maksimovskiy, E. A., Asanov, I. P., Arymbaeva, A. T., Bulusheva, L. G., & Okotrub, A. V. (2021). Effect of Toluene Addition in an Electric Arc on Morphology, Surface Modification, and Oxidation Behavior of Carbon Nanohorns and Their Sedimentation in Water. Nanomaterials, 11(4), 992. https://doi.org/10.3390/nano11040992