Branching of Titanium Nanorods
Abstract
:1. Introduction
2. Experimental Methods
3. Results and Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barranco, A.; Borras, A.; Gonzalez-Elipe, A.R.; Palmero, A. Perspectives on oblique angle deposition of thin films: From fundamentals to devices. Prog. Mater. Sci. 2016, 76, 59–153. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Parker, T.; Wang, G.C.; Lu, T.M. Surface texture evolution of polycrystalline and nanostructured films: RHEED surface pole figure analysis. J. Phys. D Appl. Phys. 2007. [Google Scholar] [CrossRef] [Green Version]
- Sit, J.C.; Vick, D.; Robbie, K.; Brett, M.J. Thin Film Microstructure Control Using Glancing Angle Deposition by Sputtering. J. Mater. Res. 1999, 14, 1197–1199. [Google Scholar] [CrossRef]
- Li, Z.; Xing, L.; Zhang, Z. Photocatalytic Properties of Columnar Nanostructured TiO 2 Films Fabricated by Sputtering Ti and Subsequent Annealing. Adv. Mater. Sci. Eng. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Robbie, K.; Brett, M.J. Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J. Vac. Sci. Technol. A Vac. Surf. Film. 1997. [Google Scholar] [CrossRef]
- Robbie, K. Advanced techniques for glancing angle deposition. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1998. [Google Scholar] [CrossRef]
- Ai, B.; Zhao, Y. Glancing angle deposition meets colloidal lithography: A new evolution in the design of nanostructures. Nanophotonics 2018. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Huang, H.; Zhang, Z.; Li, X.; Fan, Y. Simultaneous thermal stability and ultrahigh sensitivity of heterojunction SERS substrates. Nanomaterials 2019, 9, 830. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, H.; Kesapragada, S.V.; Gall, D. Growth of Y-shaped nanorods through physical vapor deposition. Nano Lett. 2005, 5, 2505–2508. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.J.; Huang, H.; Woo, C.H. Schwoebel-Ehrlich barrier: From two to three dimensions. Appl. Phys. Lett. 2002. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.K.; Huang, H. Ab initio determination of Ehrlich-Schwoebel barriers on Cu{111}. Appl. Phys. Lett. 2008. [Google Scholar] [CrossRef]
- Lagally, M.G.; Zhang, Z. Thin-film cliffhanger. Nature 2002. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.G.; Huang, H. Characteristic length scale of nanorod diameter during growth. Phys. Rev. Lett. 2008. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Elliott, P.R.; Huang, H. Generalized theory of smallest diameter of metallic nanorods. Phys. Rev. Mater. 2017. [Google Scholar] [CrossRef]
- Niu, X.; Stagon, S.P.; Huang, H.; Baldwin, J.K.; Misra, A. Smallest Metallic Nanorods Using Physical Vapor Deposition. Phys. Rev. Lett. 2013, 110, 136102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.M.; Gall, D. Branched Ta nanocolumns grown by glancing angle deposition. Appl. Phys. Lett. 2006. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.B.; Wu, H.; Zhang, Z. Omnidirectional SiO2 AR coatings. Coatings 2018, 8, 210. [Google Scholar] [CrossRef] [Green Version]
- Atanasov, P.A.; Nedyalkov, N.N.; Nikov, R.G.; Grüner, C.; Rauschenbach, B.; Fukata, N. SERS analysis of Ag nanostructures produced by ion-beam deposition. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Tajik, N.; Ehsani, M.H.; Moghadam, R.Z.; Dizaji, H.R. Effect of GLAD technique on optical properties of ZnS multilayer antireflection coatings. Mater. Res. Bull. 2018. [Google Scholar] [CrossRef]
- Liedtke, S.; Grüner, C.; Gerlach, J.W.; Rauschenbach, B. Comparative study of sculptured metallic thin films deposited by oblique angle deposition at different temperatures. Beilstein J. Nanotechnol. 2018, 9, 954–962. [Google Scholar] [CrossRef]
- Tao, Y.; Degen, C.L. Growth of magnetic nanowires along freely selectable (hkl) crystal directions. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Hou, M.J.; Zhang, X.; Cui, X.Y.; Liu, C.; Li, Z.C.; Zhang, Z.J. Preparation of SiO2@ Au nanorod array as novel surface enhanced Raman substrate for trace pollutants detection. Chin. Phys. B 2015. [Google Scholar] [CrossRef]
- Chen, L.; Andrea, L.; Timalsina, Y.P.; Wang, G.C.; Lu, T.M. Engineering epitaxial-nanospiral metal films using dynamic oblique angle deposition. Cryst. Growth Des. 2013. [Google Scholar] [CrossRef]
- Alouach, H.; Mankey, G.J. Texture orientation of glancing angle deposited copper nanowire arrays. J. Vac. Sci. Technol. A Vac. Surf. Film. 2004. [Google Scholar] [CrossRef]
- Chen, L.; Lu, T.M.; Wang, G.C. Incident flux angle induced crystal texture transformation in nanostructured molybdenum films. J. Appl. Phys. 2012. [Google Scholar] [CrossRef]
- Tang, F.; Parker, T.; Li, H.-F.; Wang, G.-C.; Lu, T.-M. Unusual Magnesium Crystalline Nanoblades Grown by Oblique Angle Vapor Deposition. J. Nanosci. Nanotechnol. 2007, 7, 3239–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Zhao, Y. Mg nanostructures tailored by glancing angle deposition. Cryst. Growth Des. 2010, 10, 440–448. [Google Scholar] [CrossRef]
- Zhang, L.J.; Spiridonova, T.I.; Kulkova, S.E.; Yang, R.; Hu, Q.M. Atomic self-diffusion anisotropy of HCP metals from first-principles calculations. Comput. Mater. Sci. 2017. [Google Scholar] [CrossRef]
- Chu, H.; Huang, H.; Wang, J. Clustering on Magnesium Surfaces-Formation and Diffusion Energies. Sci. Rep. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansen, C.G.; Huang, H.; Lu, T.M. Diffusion and formation energies of adatoms and vacancies on magnesium surfaces. Comput. Mater. Sci. 2009. [Google Scholar] [CrossRef]
- Dervaux, J.; Cormier, P.A.; Moskovkin, P.; Douheret, O.; Konstantinidis, S.; Lazzaroni, R.; Lucas, S.; Snyders, R. Synthesis of nanostructured Ti thin films by combining glancing angle deposition and magnetron sputtering: A joint experimental and modeling study. Thin Solid Film. 2017, 636, 644–657. [Google Scholar] [CrossRef]
- Sadeghi-Khosravieh, S.; Robbie, K. Morphology and crystal texture in tilted columnar micro-structured titanium thin film coatings. Thin Solid Film. 2017, 627, 69–76. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image processing with imageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Collins, T.J. ImageJ for microscopy. Biotechniques 2007. [Google Scholar] [CrossRef]
- Stagon, S.P.; Huang, H. Controllable growth of Al nanorods using physical vapor deposition. Nanoscale. Res. Lett. 2014, 9, 400. [Google Scholar] [CrossRef]
- Elliott, P.R.; Stagon, S.P.; Huang, H. Control of Separation and Diameter of Ag Nanorods through Self-organized Seeds. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grüner, C.; Liedtke, S.; Bauer, J.; Mayr, S.G.; Rauschenbach, B. Morphology of Thin Films Formed by Oblique Physical Vapor Deposition. ACS Appl. Nano Mater. 2018. [Google Scholar] [CrossRef]
- Tait, R.N.; Smy, T.; Brett, M.J. Modelling and characterization of columnar growth in evaporated films. Thin Solid Film. 1993, 226, 196–201. [Google Scholar] [CrossRef]
- Niewehuizen, J.M.; Haanstra, H.B. Microfractography of thin films. Philips Tech. Rev. 1966, 27, 87–91. [Google Scholar]
- Luo, Y.; Qin, R. Surface energy and its anisotropy of hexagonal close-packed metals. Surf. Sci. 2014, 630, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Hilton, H. The Construction of Crystallographic Projections. Mineral. Mag. J. Mineral. Soc. 1905. [Google Scholar] [CrossRef]
- Li, X.Z. SPICA: Stereographic projection for interactive crystallographic analysis. J. Appl. Crystallogr. 2016. [Google Scholar] [CrossRef] [Green Version]
- Mittemeijer, E.J.; Scardi, P. Diffraction Analysis of the Microstructure of Materials; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef]
- Mukherjee, S.; Gall, D. Structure zone model for extreme shadowing conditions. Thin Solid Film. 2013, 527, 158–163. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yussuf, N.A.; Huang, H. Branching of Titanium Nanorods. Nanomaterials 2021, 11, 1070. https://doi.org/10.3390/nano11051070
Yussuf NA, Huang H. Branching of Titanium Nanorods. Nanomaterials. 2021; 11(5):1070. https://doi.org/10.3390/nano11051070
Chicago/Turabian StyleYussuf, Nosirudeen Abayomi, and Hanchen Huang. 2021. "Branching of Titanium Nanorods" Nanomaterials 11, no. 5: 1070. https://doi.org/10.3390/nano11051070
APA StyleYussuf, N. A., & Huang, H. (2021). Branching of Titanium Nanorods. Nanomaterials, 11(5), 1070. https://doi.org/10.3390/nano11051070