A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hyaluronic Acid (HA)-Ciprofloxacin (HA-CIP) Conjugate
2.2.1. Drug Solubility Studies in Oil/Surfactant/Co-Surfactant Mixtures
2.2.2. Preliminary Selection of Excipients
2.2.3. Screening of Surfactant/Co-Surfactant Emulsification Capability
2.2.4. Pseudo Ternary Phase Diagram
2.2.5. Development of CIP Loaded Polymeric SNEDDS
2.3. Physicochemical Characterization of HA-CIP-SNEDDS
2.3.1. Size, Polydispersity Index and Zeta Potential
2.3.2. Surface Morphology via Transmission Electron Microscopy (TEM) Analysis and Scanning Electron Microscopy (SEM)
2.3.3. Thermodynamic Stability Tests
2.3.4. FTIR, DSC and XRD Analysis
2.4. In Vitro Dissolution
2.5. Ex Vivo Permeation
2.6. In Vitro Mucoadhesion Studies
- ηmix = Viscosity of mucin-nano emulsion mixture.
- ηmuc = Viscosity of mucin dispersion.
2.7. Drug Entrapment Efficiency
2.8. In Vitro Hemolytic Assay via Spectrophotometry
2.9. Biofilm Dispersion Assay
2.10. Cellular Uptake Study
2.11. In Vitro Cytotoxicity
2.12. Antibacterial Activity
2.13. In-Vivo Survival Assay against Salmonella Typhi
2.14. In Vivo Pharmacokinetics
2.15. Statistical Analysis
3. Results and Discussions
3.1. Synthesis and Characterization of HA-CIP Conjugate
3.2. Construction of a Pseudo Ternary Phase Diagram
3.3. Preliminary Selection of Excipients
3.4. Fabrication and Physicochemical Characterization of HA-Based SNEDDS for Delivery of CIP
3.5. Surface Morphology
3.6. DSC and XRD Analysis
3.7. Drug Entrapment Efficiency
3.8. In Vitro Dissolution Studies
3.9. Ex Vivo Permeation
3.10. In Vitro Mucoadhesion Studies
3.11. Salmonella Typhi Biofilm Analysis
3.12. In Vitro Hemolytic Assay via Spectrophotometry
3.13. Anti-Bacterial Activity Evaluation
3.14. Macrophages Uptake by SNEDDS
3.15. In Vitro Cytotoxicity
3.16. In Vivo Survival Assay against Salmonella Typhi
3.17. In Vivo Pharmacokinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knodler, L.A.; Elfenbein, J.R. Salmonella enterica. Trends Microbiol. 2019, 27, 964–965. [Google Scholar] [CrossRef]
- Hleba, L.; Kačániová, M.; Pochop, J.; Lejková, J.; Čuboň, J.; Kunová, S. Antibiotic resistance of Enterobacteriaceae genera and Salmonella spp., Salmonella enterica ser. typhimurium and enteritidis isolated from milk, cheese and other dairy products from conventional farm in Slovakia. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 1–20. [Google Scholar]
- Arshad, R.; Pal, K.; Sabir, F.; Rahdar, A.; Bilal, M.; Shahnaz, G.; Kyzas, G.Z. A review of the nanomaterials use for the diagnosis and therapy of salmonella typhi. J. Mol. Struct. 2021, 1230, 129928. [Google Scholar] [CrossRef]
- Wang, M.; Yang, Q.; Li, M.; Zou, H.; Wang, Z.; Ran, H.; Zheng, Y.; Jian, J.; Zhou, Y.; Luo, Y.; et al. Multifunctional Nanoparticles for Multimodal Imaging-Guided Low-Intensity Focused Ultrasound/Immunosynergistic Retinoblastoma Therapy. ACS Appl. Mater. Interfaces 2020, 12, 5642–5657. [Google Scholar] [CrossRef]
- Cappai, M.G.; Dimauro, C.; Arlinghaus, M.; Sander, S.J.; Pinna, W.; Kamphues, J. Subluminal Focal Lesions in Peyer’s Patches in the Terminal Ileum of Pigs Fed with Different Physical Forms of One Same Diet. Front. Vet. Sci. 2020, 7, 1–8. [Google Scholar] [CrossRef]
- Pham, T.H.M.; Brewer, S.M.; Thurston, T.; Massis, L.M.; Honeycutt, J.; Lugo, K.; Jacobson, A.R.; Vilches-Moure, J.G.; Hamblin, M.; Helaine, S.; et al. Salmonella-Driven Polarization of Granuloma Macrophages Antagonizes TNF-Mediated Pathogen Restriction during Persistent Infection. Cell Host Microbe 2020, 27, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Govaert, M.; Smet, C.; Walsh, J.L.; Van Impe, J.F.M. Dual-Species Model Biofilm Consisting of Listeria monocytogenes and Salmonella Typhimurium: Development and Inactivation with Cold Atmospheric Plasma (CAP). Front. Microbiol. 2019, 10, 2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, P.; Joshi, Y.; Rawat, K.; Bisht, R. Biofilms: Architecture, Resistance, Quorum Sensing and Control Mechanisms. Indian J. Microbiol. 2018, 59, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Devnarain, N.; Osman, N.; Fasiku, V.O.; Makhathini, S.; Salih, M.; Ibrahim, U.H.; Govender, T. Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents—An in-depth review of the last two decades. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 13, e1664. [Google Scholar] [CrossRef]
- Romeu, M.J.; Rodrigues, D.; Azeredo, J. Effect of sub-lethal chemical disinfection on the biofilm forming ability, resistance to antibiotics and expression of virulence genes of Salmonella Enteritidis biofilm-surviving cells. Biofouling 2020, 36, 101–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zou, D.; Zhang, Y.; Zhang, Q.; Feng, Y.; Guo, Y.; Liu, Y.; Zhang, X.; Cheng, G.; Wang, C.; et al. Pharmaceutical salts/cocrystals of enoxacin with dicarboxylic acids: Enhancing in vitro antibacterial activity of enoxacin by improving the solubility and permeability. Eur. J. Pharm. Biopharm. 2020, 154, 62–73. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Wang, J.; Yannie, P.J.; Ghosh, S. Intestinal barrier dysfunction, LPS translocation, and disease development. J. Endocr. Soc. 2020, 4, bvz039. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, R.; Kumar, R.; Jangra, M.; Rana, R.; Nayal, O.S.; Nandanwar, H.; Maurya, S.K. Synthesis of Bioactive Complex Small Molecule–Ciprofloxacin Conjugates and Evaluation of Their Antibacterial Activity. ACS Comb. Sci. 2020, 22, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Hetényi, G.; Griesser, J.; Nardin, I.; Bernkop-Schnürch, A. Combination of SEDDS and Preactivated Thiomer Technology: Incorporation of a Preactivated Thiolated Amphiphilic Polymer into Self-Emulsifying Delivery Systems. Pharm. Res. 2017, 34, 1171–1179. [Google Scholar] [CrossRef]
- Bannow, J.; Yorulmaz, Y.; Löbmann, K.; Müllertz, A.; Rades, T. Improving the drug load and in vitro performance of supersaturated self-nanoemulsifying drug delivery systems (super-SNEDDS) using polymeric precipitation inhibitors. Int. J. Pharm. 2020, 575, 118960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, F.; Xu, S.; Yun, K.; Wu, W.; Pan, W. Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability. J. Drug Deliv. Sci. Technol. 2020, 58, 101783. [Google Scholar] [CrossRef]
- Hussain, A.; Shakeel, F.; Singh, S.K.; Alsarra, I.A.; Faruk, A.; Alanazi, F.K.; Christoper, G.P. Solidified SNEDDS for the oral delivery of rifampicin: Evaluation, proof of concept, in vivo kinetics, and in silico GastroPlusTM simulation. Int. J. Pharm. 2019, 566, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.; Basehore, B.M.; Goyal, A.; Bansal, P.; Zito, P.M. Hyaluronic Acid; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Qu, D.; Wang, L.; Huo, M.; Song, W.; Lau, C.-W.; Xu, J.; Xu, A.; Yao, X.; Chiu, J.-J.; Tian, X.Y.; et al. Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation. Cardiovasc. Res. 2020, 116, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Syed Mohd, F. Role of Cytokines in the Regulation of Host Immune Responses during Infection. Ph.D. Thesis, Aligarh Muslim University, Aligarh, India, 2017. [Google Scholar]
- Poudel, K.; Banstola, A.; Tran, T.H.; Thapa, R.K.; Gautam, M.; Ou, W.; Pham, L.M.; Maharjan, S.; Jeong, J.-H.; Ku, S.K.; et al. Hyaluronic acid wreathed, trio-stimuli receptive and on-demand triggerable nanoconstruct for anchored combinatorial cancer therapy. Carbohydr. Polym. 2020, 249, 116815. [Google Scholar] [CrossRef]
- Lu, C.; Xiao, Y.; Liu, Y.; Sun, F.; Qiu, Y.; Mu, H.; Duan, J. Hyaluronic acid-based levofloxacin nanomicelles for nitric oxide-triggered drug delivery to treat bacterial infections. Carbohydr. Polym. 2020, 229, 115479. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.F.; Kharshoum, R.M.; Sayed, O.M.; Hakim, L.F.A. Formulation development of self-nanoemulsifying drug delivery system of celecoxib for the management of oral cavity inflammation. J. Liposome Res. 2018, 29, 195–205. [Google Scholar] [CrossRef]
- Kazi, M.; Shahba, A.A.; Alrashoud, S.; AlWadei, M.; Sherif, A.Y.; Alanazi, F.K. Bioactive Self-Nanoemulsifying Drug Delivery Systems (Bio-SNEDDS) for Combined Oral Delivery of Curcumin and Piperine. Molecules 2020, 25, 1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batool, A.; Arshad, R.; Razzaq, S.; Nousheen, K.; Kiani, M.H.; Shahnaz, G. Formulation and evaluation of hyaluronic acid-based mucoadhesive self nanoemulsifying drug delivery system (SNEDDS) of tamoxifen for targeting breast cancer. Int. J. Biol. Macromol. 2020, 152, 503–515. [Google Scholar] [CrossRef]
- Altamimi, M.A.; Kazi, M.; Albgomi, M.H.; Ahad, A.; Raish, M. Development and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for curcumin transdermal delivery: An anti-inflammatory exposure. Drug Dev. Ind. Pharm. 2019, 45, 1073–1078. [Google Scholar] [CrossRef]
- Efiana, N.A.; Mahmood, A.; Lam, H.T.; Zupančič, O.; Leonaviciute, G.; Bernkop-Schnürch, A. Improved mucoadhesive properties of self-nanoemulsifying drug delivery systems (SNEDDS) by introducing acyl chitosan. Int. J. Pharm. 2017, 519, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Din, F.U.; Zeb, A.; Shah, K.U.; Rehman, Z.-U. Development, in-vitro and in-vivo evaluation of ezetimibe-loaded solid lipid nanoparticles and their comparison with marketed product. J. Drug Deliv. Sci. Technol. 2019, 51, 583–590. [Google Scholar] [CrossRef]
- Aziz, D.E.; Abdelbary, A.A.; Elassasy, A.I. Investigating superiority of novel bilosomes over niosomes in the transdermal delivery of diacerein: In vitro characterization, ex vivo permeation and in vivo skin deposition study. J. Liposome Res. 2019, 29, 73–85. [Google Scholar] [CrossRef]
- Mohanty, D.; Rani, M.J.; Haque, M.A.; Bakshi, V.; Jahangir, M.A.; Imam, S.S.; Gilani, S.J. Preparation and evaluation of transdermal naproxen niosomes: Formulation optimization to preclinical anti-inflammatory assessment on murine model. J. Liposome Res. 2020, 30, 377–387. [Google Scholar] [CrossRef]
- Ali, I.; Saifullah, S.; Ahmed, F.; Ullah, S.; Imkan, I.; Hussain, K.; Imran, M.; Shah, M.R. Synthesis of long-tail nonionic surfactants and their investigation for vesicle formation, drug entrapment, and biocompatibility. J. Liposome Res. 2019, 30, 255–262. [Google Scholar] [CrossRef]
- Elbi, S.; Nimal, T.R.; Rajan, V.K.; Baranwal, G.; Biswas, R.; Jayakumar, R.; Sathianarayanan, S. Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf. B 2017, 160, 40–47. [Google Scholar]
- Liu, M.; Li, J.; Li, B. Mannose-Modificated Polyethylenimine: A Specific and Effective Antibacterial Agent against Escherichia coli. Langmuir 2018, 34, 1574–1580. [Google Scholar] [CrossRef]
- Liu, C.; Lv, L.; Guo, W.; Mo, L.; Huang, Y.; Li, G.; Huang, X. Self-Nanoemulsifying Drug Delivery System of Tetrandrine for Improved Bioavailability: Physicochemical Characterization and Pharmacokinetic Study. BioMed Res. Int. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, L.; Tessier, J.; Douyère, G.; Nardello-Rataj, V.; Schmitzer, A.R. Phytochemical-and cyclodextrin-based pickering emulsions: Natural potentiators of antibacterial, antifungal, and antibiofilm activity. Langmuir. 2020, 36, 4317–4323. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.E.; Zahid, M. Cell Penetrating Peptides, Novel Vectors for Gene Therapy. Pharmaceutics 2020, 12, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, I.; Pandit, J.; Sultana, Y.; Mishra, A.K.; Hazari, P.P.; Aqil, M. Optimization by design of etoposide loaded solid lipid nanoparticles for ocular delivery: Characterization, pharmacokinetic and deposition study. Mater. Sci. Eng. C 2019, 100, 959–970. [Google Scholar] [CrossRef]
- Jordan, A.R.; Racine, R.R.; Hennig, M.J.P.; Lokeshwar, V.B. The Role of CD44 in Disease Pathophysiology and Targeted Treatment. Front. Immunol. 2015, 6, 182. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, M.; Meena, J.; Singhvi, P.; Thiyagarajan, D.; Saneja, A.; Panda, A.K. Hyaluronic acid-dihydroartemisinin conjugate: Synthesis, characterization, and in vitro evaluation in lung cancer cells. Int. J. Biol. Macromol. 2019, 133, 495–502. [Google Scholar] [CrossRef]
- Kanwal, T.; Kawish, M.; Maharjan, R.; Ghaffar, I.; Ali, H.S.; Imran, M.; Perveen, S.; Saifullah, S.; Simjee, S.U.; Shah, M.R. Design and development of permeation enhancer containing self-nanoemulsifying drug delivery system (SNEDDS) for ceftriaxone sodium improved oral pharmacokinetics. J. Mol. Liq. 2019, 289, 111098. [Google Scholar] [CrossRef]
- Hayashi, Y.; Takamiya, M.; Jensen, P.B.; Ojea-Jimenez, I.; Claude, H.; Antony, C.; Kjaer-Sorensen, K.; Grabher, C.; Boesen, T.; Gilliland, D.; et al. Differential nanoparticle sequestration by macrophages and scavenger endothelial cells visualized in vivo in real-time and at ultrastructural resolution. ACS Nano 2020, 10, 1665–1681. [Google Scholar] [CrossRef]
- Jahan, F.; uz Zaman, S.; Arshad, R.; Tabish, T.A.; Naseem, A.A.; Shahnaz, G. Mapping the potential of thiolated pluronic based nanomicelles for the safe and targeted delivery of vancomycin against staphylococcal blepharitis. J. Drug Deliv. Sci. Technol. 2021, 61, 102220. [Google Scholar] [CrossRef]
- Mudakavi, R.J.; Vanamali, S.; Chakravortty, D.; Raichur, A.M. Development of arginine based nanocarriers for targeting and treatment of intracellularSalmonella. RSC Adv. 2017, 7, 7022–7032. [Google Scholar] [CrossRef] [Green Version]
Formulations | Surfactant to Co-Surfactant Ratio (Km Ratio) | Capryol 90 (% w/w) | Tween 80 (% w/w) | PEG 200 (% w/w) | CIP (% w/w) | Polymer (% w/w) |
---|---|---|---|---|---|---|
1 | 1:1 | 10 | 44 | 44 | 1 | 1 |
2 | 1:1 | 20 | 39 | 39 | 1 | 1 |
3 | 1:1 | 30 | 34 | 34 | 1 | 1 |
4 | 2:1 | 30 | 45.3 | 22.7 | 1 | 1 |
5 | 2:1 | 49 | 26 | 23 | 1 | 1 |
6 | 2:1 | 50 | 37 | 11 | 1 | 1 |
7 | 1:2 | 20 | 26 | 52 | 1 | 1 |
8 | 1:2 | 30 | 22.7 | 45.3 | 1 | 1 |
9 | 1:2 | 40 | 19.3 | 38.7 | 1 | 1 |
CIP-Loaded Formulations | Transmittance (%) | Saturation Solubility (mg/mL) | Cloud Point (°C) |
---|---|---|---|
HA-SNEDDS | 89.5 ± 0.05 | 12.05 ± 0.08 | 79 ± 0.56 |
HA-CIP SNEDDS | 91.5 ± 0.02 | 11.01 ± 0.15 | 78 ± 2.78 |
CIP-Loaded Formulations | Z-Average (d. nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
HA-SNEDDS | 50 ± 0.567 nm | 0.3 ± 0.004 | −8.60 ± 0.259 mV |
HA-CIP-SNEDDS | 40 ± 0.457 nm | 0.2 ± 0.003 | −11.4 ± 0.465 mV |
Kinetic Models | Zero Order Ct = C0 + k0t | First Order logQ0 + Kit/2.3 | Korsmeyer-Peppas Mi/M∞ = Kth + b | Higuchi f1 = Q = KH√t | ||||
---|---|---|---|---|---|---|---|---|
Formulation | R2 | K0 | R2 | K1 | R2 | *N | R2 | KH |
CIP | 0.5787 ± 2.57 | 32.90 | 0.9534 ± 1.57 | 0.877 | 0.9370 ± 4.85 | 0.502 | 0.9360 ± 3.57 | 53.70 |
CIP-SNEDDS | 0.194 ± 2.67 | 7.095 | 0.9672 ± 2.07 | 0.286 | 0.9551 ± 3.59 | 0.360 | 0.8748 ± 2.47 | 26.157 |
HA SNEDDS | 0.6227 ± 3.01 | 2.77 | 0.8358 ± 4.57 | 0.137 | 0.9765 ± 3.10 | 0.345 | 0.8768 ± 3.42 | 17.310 |
HA-CIP SNEDDS | 0.5431 ± 3.17 | 2.29 | 0.8465 ± 2.59 | 0.060 | 0.9964 ± 2.97 | 0.437 | 0.9920 ± 2.57 | 13.45 |
Parameter | Unit | CIP | HA-CIP |
---|---|---|---|
t1/2 | H | 4 ± 1.57 | 16 ± 3.57 |
T max | H | 1 ± 3.37 | 3 ± 3.12 |
C max | μg/mL | 54.50 ± 2.57 | 225.65 ± 3.89 |
AUC 0-t | μg/mL × h | 210.75 ± 3.59 | 1562.83 ± 1.23 |
AUC 0-inf | μg/mL × h | 600.84 ± 2.17 | 2124.50 ± 1.90 |
AUMC 0-inf | μg/mL × h2 | 900.65 ± 1.57 | 36,794.5 ± 2.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, R.; Tabish, T.A.; Kiani, M.H.; Ibrahim, I.M.; Shahnaz, G.; Rahdar, A.; Kang, M.; Pandey, S. A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection. Nanomaterials 2021, 11, 1086. https://doi.org/10.3390/nano11051086
Arshad R, Tabish TA, Kiani MH, Ibrahim IM, Shahnaz G, Rahdar A, Kang M, Pandey S. A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection. Nanomaterials. 2021; 11(5):1086. https://doi.org/10.3390/nano11051086
Chicago/Turabian StyleArshad, Rabia, Tanveer A. Tabish, Maria Hassan Kiani, Ibrahim M. Ibrahim, Gul Shahnaz, Abbas Rahdar, Misook Kang, and Sadanand Pandey. 2021. "A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection" Nanomaterials 11, no. 5: 1086. https://doi.org/10.3390/nano11051086
APA StyleArshad, R., Tabish, T. A., Kiani, M. H., Ibrahim, I. M., Shahnaz, G., Rahdar, A., Kang, M., & Pandey, S. (2021). A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection. Nanomaterials, 11(5), 1086. https://doi.org/10.3390/nano11051086