Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on Few-Layer Graphene and CNTs
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fattahi, P.; Yang, G.; Kim, G.; Abidian, M.R. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 2014, 26, 1846–1885. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.K.; De, S.; Franco, A.; Balu, A.M.; Luque, R. Sustainable biomaterials: Current trends, challenges and applications. Molecules 2015, 21, 48. [Google Scholar] [CrossRef] [PubMed]
- Ratner, B.D. Been there, done that, and evolving into the future, annual review of biomedical engineering. Biomaterials 2019, 21, 171–191. [Google Scholar]
- Jasso-Gastinel, C.; Kenny, J. Modification of Polymer Properties; William Andrew: Oxford, UK, 2016. [Google Scholar]
- Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Gunatillake, T. Electrically conductive polymers and composites for biomedical applications. RSC Adv. 2015, 5, 37553–37567. [Google Scholar] [CrossRef]
- Yoda, R. Elastomers for biomedical applications. J. Biomater. Sci. 1998, 9, 561–626. [Google Scholar] [CrossRef]
- Huang, Y.; Kormakov, S.; He, X.; Gao, X.; Zheng, X.; Liu, Y.; Sun, J.; Wu, D. Conductive polymer composites from renewable resources: An overview of preparation, properties, and applications. Polymers 2019, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Rajakumar, G.; Zhang, X.-H.; Gomathi, T.; Wang, S.-F.; Azam Ansari, M.; Mydhili, G.; Nirmala, G.; Alzohairy, M.A.; Chung, I.-M. Current use of carbon-based materials for biomedical applications—A prospective and review. Processes 2020, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Bianco, S.; Pirri, C.F.; Quaglio, M.; Ferrario, P.; Castagna, R. Nanocomposites Based on Elastomeric Matrix Filled with Carbon Nanotubes for Biological Applications; INTECH Open Access Publisher: London, UK, 2011. [Google Scholar]
- Dishovsky, N.; Mihaylov, M. Elastomer-Based Composite Materials: Mechanical, Dynamic and Microwave Properties, and Engineering Applications; Apple Academic Press: Oakville, ON, Canada, 2018. [Google Scholar]
- Minnikanti, S.; Peixoto, N. Implantable electrodes with carbon nanotube coatings. In Carbon Nanotubes Applications on Electron Devices; INTECH Open Access Publisher: London, UK, 2011. [Google Scholar]
- Sanchez-Hidalgo, R.; Blanco, C.; Menendez, R.; Verdejo, R.; Lopez-Manchado, M.A. Multifunctional silicone rubber nanocomposites by controlling the structure and morphology of graphene material. Polymers 2019, 11, 449. [Google Scholar] [CrossRef] [Green Version]
- Liang, A.; Jiang, X.; Hong, X.; Jiang, Y.; Shao, Z.; Zhu, D. Recent developments concerning the dispersion methods and mechanisms of graphene. Coatings 2018, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.-C.; Siddiqui, N.; Marom, G.; Kim, J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites part A. Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Mani, V.; Chen, S.-M.; Lou, B. Three dimensional graphene oxide-carbon nanotubes and graphene-carbon nanotubes hybrids. Int. J. Electrochem. Sci. 2013, 8, 11641–11660. [Google Scholar]
- Hu, H.; Zhao, L.; Liu, J.; Liu, Y.; Junmei, C.; Luo, J.; Liang, Y.; Tao, Y.; Wang, X.; Zhao, J. Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene. Polymer 2012, 53, 3378–3385. [Google Scholar] [CrossRef]
- Pradhan, B.; Srivastava, S. Synergistic effect of three-dimensional multi-walled carbon nanotube–graphene nanofiller in enhancing the mechanical and thermal properties of high-performance silicone rubber. Polym. Int. 2014, 63, 1219–1228. [Google Scholar] [CrossRef]
- Oh, J.; Jun, G.; Jin, S.; Ryu, H.; Hong, S. Enhanced electrical networks of stretchable conductors with small fraction of CNT/Graphene hybrid fillers. ACS Appl. Mater. Interfaces 2016, 8, 3319–3325. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, L.; Yao, X.; Zheng, Z.; Fang, D. Monotonic strain sensing behavior of self-assembled carbon nanotubes/graphene silicone rubber composites under cyclic loading. Compos. Sci. Technol. 2020, 200, 108474. [Google Scholar] [CrossRef]
- Yang, H.; Yao, X.; Yuan, L.; Gong, L.; Liu, Y. Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading. Nanoscale 2018, 11, 578–586. [Google Scholar] [CrossRef]
- Kantarak, E.; Rucman, S.; Kumpika, T.; Sroila, W.; Tippo, P.; Panthawan, A.; Sanmuangmoon, P.; Sriboonruang, A.; Jhuntama, N.; Wiranwetchayan, O.; et al. Fabrication, design and application of stretchable strain sensors for tremor detection in parkinson patient. Appl. Compos. Mater. 2020, 27, 955–968. [Google Scholar] [CrossRef]
- Lee, C.; Jug, L.; Meng, E. High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Appl. Phys. Lett. 2013, 102, 183511. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Jeong, Y.G. Synergistic effect of hybrid carbon fillers on electric heating behavior of flexible polydimethylsiloxane-based composite films. Compos. Sci. Technol. 2015, 106, 134–140. [Google Scholar] [CrossRef]
- Shafiei Amrei, S.; Asghari, M.; Esfahanian, M.; Zahraei, Z. Highly selective CNT-coupled-GO-incorporated polydimethylsiloxane membrane for pervaporative membrane bioreactor ethanol production. J. Chem. Technol. Biotechnol. 2020, 95, 1604–1613. [Google Scholar] [CrossRef]
- Kumpika, T.; Kantarak, E.; Sriboonruang, A.; Sroila, W.; Tippo, P.; Thongpan, W.; Pooseekheaw, P.; Panthawan, A.; Jumrus, N.; Sanmuangmoon, P.; et al. Stretchable and compressible strain sensors for gait monitoring constructed using carbon nanotube/graphene composite. Mater. Res. Express 2020, 7, 035006. [Google Scholar] [CrossRef]
- Kim, T.; Park, J.; Sohn, J.; Cho, D.; Jeon, S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D–2D hybrid carbon nanocomposites for all-in-one ECG electrodes. ACS Nano 2016, 10, 4770–4778. [Google Scholar] [CrossRef]
- Lo, A.-Y.; Saravanan, L.; Tseng, C.-M.; Wang, F.-K.; Huang, J.-T. Effect of composition ratios on the performance of graphene/carbon nanotube/manganese oxide composites toward supercapacitor applications. ACS Omega 2019, 5, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Li, T.-T.; Zhong, Y.; Yan, M.; Zhou, W.; Xu, W.; Huang, S.; Sun, F.; Lou, C.-W.; Lin, J.-H. Synergistic effect and characterization of graphene/carbon nanotubes/polyvinyl alcohol/sodium alginate nanofibrous membranes formed using continuous needleless dynamic linear electrospinning. Nanomaterials 2019, 9, 714. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Lu, C.; Han, Y.; Zhou, Z.; Yuan, G.; Zhang, X. Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Compos. Sci. Technol. 2016, 124, 44–51. [Google Scholar] [CrossRef] [Green Version]
Filler Type | Filler Content (wt.%) | Resistance, R (Ohm·cm) | Elongation at Break, Z (%) |
---|---|---|---|
Graphene (100%) | 10 | 5.39 | 85.84 |
15 | 2.07 | 46.68 | |
20 | 1.54 | 15.56 | |
Graphene (90%) + CNT (10%) | 10 | 3.96 | 97.79 |
15 | 1.77 | 50.46 | |
20 | 1.01 | 18.88 | |
Graphene (80%) + CNT (20%) | 10 | 2.16 | 100.80 |
15 | 1.61 | 60.58 | |
Graphene (60%) + CNT (40%) | 10 | 2.78 | 97.59 |
15 | 2.53 | 38.36 | |
Graphene (40%) + CNT (60%) | 10 | 3.85 | 86.72 |
Graphene (20%) + CNT (80%) | 10 | 3.74 | 81.83 |
CNT (100%) | 10 | 2.90 | 78.38 |
Pristine silicone (100%) | - | 2.9 × 1014 | 87.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barshutina, M.N.; Volkov, V.S.; Arsenin, A.V.; Yakubovsky, D.I.; Melezhik, A.V.; Blokhin, A.N.; Tkachev, A.G.; Lopachev, A.V.; Kondrashov, V.A. Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on Few-Layer Graphene and CNTs. Nanomaterials 2021, 11, 1143. https://doi.org/10.3390/nano11051143
Barshutina MN, Volkov VS, Arsenin AV, Yakubovsky DI, Melezhik AV, Blokhin AN, Tkachev AG, Lopachev AV, Kondrashov VA. Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on Few-Layer Graphene and CNTs. Nanomaterials. 2021; 11(5):1143. https://doi.org/10.3390/nano11051143
Chicago/Turabian StyleBarshutina, Marie N., Valentyn S. Volkov, Aleksey V. Arsenin, Dmitriy I. Yakubovsky, Alexander V. Melezhik, Alexander N. Blokhin, Alexey G. Tkachev, Alexander V. Lopachev, and Vladislav A. Kondrashov. 2021. "Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on Few-Layer Graphene and CNTs" Nanomaterials 11, no. 5: 1143. https://doi.org/10.3390/nano11051143
APA StyleBarshutina, M. N., Volkov, V. S., Arsenin, A. V., Yakubovsky, D. I., Melezhik, A. V., Blokhin, A. N., Tkachev, A. G., Lopachev, A. V., & Kondrashov, V. A. (2021). Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on Few-Layer Graphene and CNTs. Nanomaterials, 11(5), 1143. https://doi.org/10.3390/nano11051143