Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors
Abstract
:1. Introduction
2. Preparation of Gold Nanoparticles
3. Types of Immobilization Methods
3.1. Covalent Bonding
3.2. Adsorption
3.3. Cross-Linking
3.4. Entrapment
3.5. Self-Assembled Monolayers (SAMs)
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
AuNPs | gold nanoparticles |
AACVD | aerosol-assisted chemical vapor deposition |
BSA | bovine serum albumin |
CVD | chemical vapor deposition |
CV | cyclic voltammetry |
CA | chronoamperometry |
CS | chitosan |
CHIT | chitosan |
–CHO | aldehyde group |
Chi-Py | pyrrole-branched-chitosan |
DPV | differential pulse voltammetry |
EDC | N-ethyl-N’-(3-dimethylaminopropyl)carbodiimide hydrochloride |
EIS | electrochemical impedance spectroscopy |
FADH2 | reduced flavin adenine dinucleotide |
FAD | flavin adenine dinucleotide |
Fc | 6-(ferrocenyl)hexanethiol |
GNPs | gold nanoparticles |
GOx | glucose oxidase |
GOD | glucose oxidase |
GCE | glassy carbon electrode |
GR | graphene rod |
HCQE | 3-(5,8-bis (2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl) -3-(9-hexyl-9H-carbazole-3-yl) quinoxalin-2-yl); |
HAuCl4 | gold (I) perchlorate |
ITO | indium tin oxide |
IDE | interdigitated (di)electrodes |
LOD | limit of detection |
LB | Langmuir–Blodgett method |
MPA | 3-mercaptopropionic acid |
MUA | mercaptoundecanoic acid |
MN | microneedle |
MWNTs | multiwalled nanotubes |
MPS | (3 mercaptopropyl)-trimethoxysilane |
NHS | N-hydroxysuccinimide |
–NH2 | amino group |
ODA | octadecylamine |
OPPy | oxidized polypyrrole |
PVD | physical vapor deposition |
PPD | poly(1,10-phenanthroline-5,6-dione) |
PPCA | poly(pyrrole-2-carboxylic acid) |
PCE | pencil carbon electrode |
PLA | polylactic acid |
PVA | poly(vinyl alcohol) |
PEI | poly(ethyleneimine) |
PBQ | parabenzopinone |
–SH | thiol group |
SLG | single-layer graphene |
SEM | scanning electron microscopy |
SAMs | self-assembled monolayers |
SP | screen-printing |
SPCE | screen-printed carbon electrode |
TiND | titanium nanodimples |
4-ATP | 4-aminothiophenol |
References
- Dagogo-Jack, S. Diabetes Mellitus in Developing Countries and Underserved Communities; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review. Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Johnston, W.A.; Stein, V.; Kalimuthu, P.; Perez-Alcala, S.; Bernhardt, P.V.; Alexandrov, K. Engineering PQQ-glucose dehydrogenase into an allosteric electrochemical Ca2+ sensor. Chem. Commun. 2016, 52, 485–488. [Google Scholar] [CrossRef] [PubMed]
- Kucherenko, L.; Soldatkin, A.; Kucherenko, D.; Soldatkina, O.; Dzyadevych, S.V. Advances in nanomaterial application in enzyme-based electrochemical biosensors: A review. Nanoscale Adv. 2019, 1, 4560–4577. [Google Scholar] [CrossRef] [Green Version]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef]
- Hatada, M.; Loew, N.; Inose-Takahashi, Y.; Okuda-Shimazaki, J.; Tsugawa, W.; Mulchandani, A.K. Sode, Development of a glucose sensor employing quick and easy modification method with mediator for altering electron acceptor preference. Bioelectrochemistry 2018, 121, 185. [Google Scholar] [CrossRef]
- Garcia-Galan, C.; Berenguer-Murcia, A.; Fernandez-Lafuente, R.; Rodrigues, R.C. Potential of Different Enzyme Immobilization Strategies to Improve Enzyme Performance. Adv. Synth. Catal. 2011, 353, 2885–2904. [Google Scholar] [CrossRef]
- Spahn, C.; Minteer, S. Enzyme Immobilization in Biotechnology. Recent Pat. Eng. 2008, 2, 195–200. [Google Scholar] [CrossRef]
- Mazlan, S.Z.; Hanifah, S.A. Effects of Temperature and pH on Immobilized Laccase Activity in Conjugated Methacrylate-Acrylate Microspheres. Int. J. Polym. Sci. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cipolatti, E.P.; Valério, A.; Henriques, R.O.; Moritz, D.E.; Ninow, J.L.; Freire, D.M.G.; de Oliveira, D. Nanomaterials for biocatalyst immobilization–state of the art and future trends. RSC Adv. 2016, 6, 104675–104692. [Google Scholar] [CrossRef]
- Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption 2014, 20, 801–821. [Google Scholar] [CrossRef] [Green Version]
- Nisha, S.; Arun Karthick, S.; Gobi, N. A Review on Methods, Application and Properties of Immobilized Enzyme. Chem. Sci. Rev. Lett. 2012, 1, 148–155. [Google Scholar]
- Liang, S.; Wu, X.-L.; Xiong, J.; Zong, M.H.; Lou, W.Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213149–213173. [Google Scholar] [CrossRef]
- Engelmann, C.; Ekambaram, N.; Johannsen, J.; Fellechner, O.; Waluga, T.; Fieg, G.; Liese, A.; Bubenheim, P. Enzyme Immobilization on synthesized Nanoporous Silica Particles and their Application in a Bi-enzymatic Reaction. ChemCatChem 2020, 12, 2245–2252. [Google Scholar] [CrossRef]
- Geormalar, C.; Seenuvasan, M.; Kumar, K.S.; Kumar, A.; Parthiban, R. Review on surface modification of nanocarriers to overcome diffusion limitations: An enzyme immobilization aspect. Biochem. Eng. J. 2020, 158, 107574. [Google Scholar] [CrossRef]
- Zhang, J.; Mou, L.; Jiang, X. Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. 2020, 11, 923–936. [Google Scholar] [CrossRef] [Green Version]
- Baghayeri, M.; Nodehi, M.; Amiri, A.; Amirzadeh, N.; Behazin, R.; Iqbal, M.Z. Electrode designed with a nanocomposite film of CuO Honeycombs/Ag nanoparticles electrogenerated on a magnetic platform as an amperometric glucose sensor. Anal. Chim. Acta 2020, 1111, 49–59. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, C.; Yang, X.; Cheng, X.; Elzatahry, A.; Alghamdi, A.; Deng, Y. Hollow Mesoporous Carbon Nanospheres Loaded with Pt Nanoparticles for Colorimetric Detection of Ascorbic Acid and Glucose. ACS Appl. Nano Mater. 2020, 3, 4586–4598. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, B.; Fu, X.Z.; Sun, R.; Wong, C.P. CuO nanorods supported Pd nanoparticles as high performance electrocatalysts for glucose detection. J. Electroanal. Chem. 2017, 807, 220–227. [Google Scholar] [CrossRef]
- Yang, P.; Wang, X.; Ge, C.; Fu, X.; Liu, X.Y.; Chai, H.; Chen, K. Fabrication of CuO nanosheets-built microtubes via Kirkendall effect for non-enzymatic glucose sensor. Appl. Surf. Sci. 2019, 494, 484–491. [Google Scholar] [CrossRef]
- Lin, L.Y.; Karakocak, B.B.; Kavadiya, S.; Soundappan, T.; Biswas, P. A highly sensitive non-enzymatic glucose sensor based on Cu/Cu2O/CuO ternary composite hollow spheres prepared in a furnace aerosol reactor. Sens. Actuators B Chem. 2018, 259, 745–752. [Google Scholar] [CrossRef]
- Kailasa, S.; Rani, B.G.; Bhargava Reddy, M.S.; Jayrambabu, N.; Munindra, P.; Sharma, S.; Venkateswara Rao, K. NiO nanoparticles-decorated conductive polyaniline nanosheets for amperometric glucose biosensor. Mater. Chem. Phys. 2019, 181, 1581–1589. [Google Scholar] [CrossRef]
- Shim, K.; Lee, W.C.; Park, M.S.; Shahabuddin, M.; Yamauchi, Y.; Hossain, M.S.A.; Kim, J.H. Au decorated core-shell structured Au@Pt for the glucose oxidation reaction. Sens. Actuators B Chem. 2018, 278, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Du, X. Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sens. Actuators B Chem. 2017, 239, 536–543. [Google Scholar] [CrossRef]
- Chawla, M.; Pramanick, B.; Kaur Randhawa, J.; Prem Felix, S. Effect of composition and calcination on the enzymeless glucose detection of Cu-Ag bimetallic nanocomposites. Mater. Today 2021, 26, 101815–101828. [Google Scholar] [CrossRef]
- Hwang, D.W.; Lee, S.; Seo, M.; Chung, T.D. Recent advances in electrochemical non-enzymatic glucose sensors—A review. Anal. Chim. Acta 2018, 1033, 1–34. [Google Scholar] [CrossRef]
- Lipińska, W.; Siuzdak, K.; Ryl, J.; Barski, P.; Śliwiński, G.; Grochowska, K. The optimization of enzyme immobilization at Au-Ti nanotextured platform and its impact onto the response towards glucose in neutral media. Mater. Res. Express 2019, 6, 1150. [Google Scholar] [CrossRef]
- Lipińska, W.; Siuzdak, K.; Karczewski, J.; Dołęga, A.; Grochowska, K. Electrochemical glucose sensor based on the glucose oxidase entrapped in chitosan immobilized onto laser-processed Au-Ti electrode. Sens. Actuators B Chem. 2021, 330, 129409. [Google Scholar] [CrossRef]
- Grochowska, K.; Siuzdak, K.; Karczewski, J.; Śliwiński, G. Functionalization of indium-tin-oxide electrodes by laser-nanostructured gold thin films for biosensing applications. Appl. Surf. Sci. 2015, 357, 1684–1691. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- De Souza, C.D.; Ribeiro Nogueira, B.; Rostelato, M.E.C.M. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J. Alloys Compd. 2019, 798, 714–740. [Google Scholar] [CrossRef]
- Zhao, P.; Li, N.; Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013, 257, 638–665. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.; Ding, B.; Lan, X.; Guo, Y. Preparation of copper nanoparticles by chemical reduction method using potassium borohydride. Trans. Nonferr. Met. Soc. China 2010, 20, 240–244. [Google Scholar] [CrossRef]
- Grodzicki, A.; Łakomska, I.; Piszczek, P.; Szymańska, I.; Szłyk, E. Copper(I), silver(I) and gold(I) carboxylate complexes as precursors in chemical vapour deposition of thin metallic film. Coord. Chem. Rev. 2005, 249, 2232–2258. [Google Scholar] [CrossRef]
- Bryant, W.A. The fundamentals of chemical vapour deposition. J. Mater. Sci. 1977, 12, 1285–1306. [Google Scholar] [CrossRef]
- Chew, C.; Bishop, P.; Salcianu, C.; Carmalt, C.J.; Parkin, I.P. Aerosol-assisted deposition of gold nanoparticle-tin dioxide composite films. RSC Adv. 2014, 4, 13182–13190. [Google Scholar] [CrossRef]
- Zhao, J.; Mayoral, A.; Martínez, L.; Johansson, M.P.; Djurabekova, F.; Huttel, Y. Core–Satellite Gold Nanoparticle Complexes Grown by Inert Gas-Phase Condensation. J. Phys. Chem. C 2020, 124, 24441–24450. [Google Scholar] [CrossRef]
- Menazea, A.A.; Ahmed, M.K. Wound healing activity of Chitosan/Polyvinyl Alcohol embedded by gold nanoparticles prepared by nanosecond laser ablation. J. Mol. Struct. 2020, 1217, 128401. [Google Scholar] [CrossRef]
- Veith, G.M.; Lupini, A.R.; Pennycook, S.J.; Villa, A.; Prati, L.; Dudney, N.J. Magnetron sputtering of gold nanoparticles onto WO3 and activated carbon. Catal. Today 2007, 122, 248–253. [Google Scholar] [CrossRef]
- Grochowska, K.; Siuzdak, K.; Karczewski, J.; Szkoda, M.; Śliwiński, G. Properties of Thermally Dewetted Thin Au Films on ITO-Coated Glass for Biosensing Applications. Plasmonics 2016, 12, 1939–1946. [Google Scholar] [CrossRef]
- Nayfeh, M.H. Fundamentals and Applications of Nano Silicon in Plasmonics and Fullerines, Current and Future Trends; Micro and Nano Technologies: Jaipur, India, 2018; pp. 341–362. [Google Scholar]
- Bruno, L.; Urso, M.; Shacham-Diamand, Y.; Priolo, F.; Mirabella, S. Role of Substrate in Au Nanoparticle Decoration by Electroless Deposition. Nanomaterials 2020, 10, 2180. [Google Scholar] [CrossRef]
- Dilmac, Y.; Guler, M. Fabrication of non-enzymatic glucose sensor dependent upon Au nanoparticles deposited on carboxylated graphene oxide. J. Electroanal. Chem. 2020, 864, 114091–114100. [Google Scholar] [CrossRef]
- Zhu, B.; Yu, L.; Beikzadeh, S.; Zhang, S.; Zhang, P.; Wang, L.; Travas-Sejdic, J. Disposable and portable gold nanoparticles modified-laser-scribed graphene sensing strips for electrochemical non-enzymatic detection of glucose. Electrochim. Acta 2021, 378, 138132–138140. [Google Scholar] [CrossRef]
- Li, C.; Su, Y.; Lv, X.; Xia, H.; Shi, H.; Yang, X.; Wang, Y. Controllable anchoring of gold nanoparticles to polypyrrole nanofibers by hydrogen bonding and their application in nonenzymatic glucose sensors. Biosens. Bioelectron. 2012, 38, 402–406. [Google Scholar] [CrossRef]
- Mishra, A.K.; Mukherjee, B.; Kumar, A.; Jarwal, D.K.; Ratan, S.; Kumar, C.; Jit, S. Superficial fabrication of gold nanoparticles modified CuO nanowires electrode for non-enzymatic glucose detection. RSC Adv. 2019, 9, 1772–1781. [Google Scholar] [CrossRef] [Green Version]
- Rattanawarinchai, P.; Khemasiri, N.; Soyeux, N.; Jessadaluk, S.; Klamchuen, A.; Wirunchit, S.; Nukeaw, J. Gold nanoparticles decorated zinc oxide nanorods as electrodes for a highly sensitive non-enzymatic electrochemical glucose detection. Jpn. J. Appl. Phys. 2019, 58, 4. [Google Scholar] [CrossRef]
- Wang, J.; Cao, X.; Wang, X.; Yang, S.; Wang, R. Electrochemical Oxidation and Determination of Glucose in Alkaline Media Based on Au (111)-Like Nanoparticle Array on Indium Tin Oxide Electrode. Electrochim. Acta 2014, 138, 174–186. [Google Scholar] [CrossRef]
- Zhou, L.; Gan, T.; Zheng, D.; Yan, J.; Hu, C.; Hu, S. High-density gold nanoparticles on multi-walled carbon nanotube films: A sensitive electrochemical nonenzymatic platform of glucose. J. Exp. Nanosci. 2012, 7, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Liang, F.; Tian, H.; Hu, J. Nonenzymatic glucose sensor based on ITO electrode modified with gold nanoparticles by ion implantation. Electrochim. Acta 2014, 120, 314–318. [Google Scholar] [CrossRef]
- Wang, S.H.; Chang, S.J.; Hsu, C.L.; Fang, Y.J. Visible Illumination Enhanced Nonenzymatic Glucose Photobiosensor Based on TiO2 Nanorods Decorated with Au Nanoparticles. IEEE Trans. Biomed. Eng. 2018, 65, 2052–2057. [Google Scholar] [CrossRef]
- Nguyena, H.H.; Kim, M. An Overview of Techniques in Enzyme Immobilization. Appl. Sci. Converg. Technol. 2017, 26, 157–163. [Google Scholar] [CrossRef]
- Bashir, N.; Sood, M.; Bandral, J.D. Enzyme immobilization and its applications in food processing: A review. Int. J. Chem. Stud. 2020, 8, 254–261. [Google Scholar] [CrossRef]
- Sirisha, V.L.; Jain, A.; Jain, A. Enzyme Immobilization. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2016; Volume 79, pp. 179–211. [Google Scholar]
- Zucca, P.; Fernandez-Lafuente, R.; Sanjust, E. Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules 2016, 21, 1577. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Lakshmipriya, T.; Gopinath, S.C.; Anbu, P.; Chen, Y.; Hariri, F.; Li, L. Glucose oxidase complexed gold-graphene nanocomposite on a dielectric surface for glucose detection: A strategy for gestational diabetes mellitus. Int. J. Nanomed. 2019, 14, 7851–7860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Wang, Y.; Wang, H.; Hou, S. Gold nanoparticles decorated on single layer graphene applied for electrochemical ultrasensitive glucose biosensor. J. Electroanal. Chem. 2019, 885, 113495. [Google Scholar] [CrossRef]
- Kausaite-Minkstimiene, A.; Glumbokaite, L.; Ramanaviciene, A.; Ramanavicius, A. Reagent-less amperometric glucose biosensor based on nanobiocomposite consisting of poly(1,10-phenanthroline-5,6-dione), poly(pyrrole-2-carboxylic acid), gold nanoparticles and glucose oxidase. Microchem. J. 2020, 154, 104665. [Google Scholar] [CrossRef]
- Fang, L.; Liu, B.; Liu, L.; Li, Y.; Huang, K.; Zhang, Q. Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles-functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor. Sens. Actuators B Chem. 2016, 222, 1096–1102. [Google Scholar] [CrossRef]
- Devasenathipathy, R.; Mani, V.; Chen, S.M.; Huang, S.T.; Huang, T.T.; Lin, C.M.; Chen, B.J. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes. Enzym. Microb. Technol. 2015, 78, 40–45. [Google Scholar] [CrossRef]
- Wang, K.H.; Wu, J.Y.; Chen, L.H.; Lee, Y.L. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance. Appl. Surf. Sci. 2016, 366, 202–209. [Google Scholar] [CrossRef]
- Tan, B.; Baycan, F. A new donor-acceptor conjugated polymer-gold nanoparticles biocomposite materials for enzymatic determination of glucose. Polymer 2020, 210, 123066. [Google Scholar] [CrossRef]
- Zhang, B.L.; Yang, Y.; Zhao, Z.Q.; Guo, X.D. A gold nanoparticles deposited polimer microneedle enzymatic biosensor for glucose sensing. Electrochim. Acta 2020, 358, 136917. [Google Scholar] [CrossRef]
- Onay, A.; Dogan, Ü.; Ciftci, H.; Cetin, D.; Suludere, Z.; Tamer, U. Amperometric glucose sensor based on the glucose oxidase enzyme immobilized on graphite rod electrode modified with Fe3O4-CS-Au magnetic nanoparticles. Ionics 2018, 24, 4015–4022. [Google Scholar] [CrossRef]
- Labus, K.; Wolanin, K.; Radosiński, Ł. Comparative Study on Enzyme Immobilization Using Natural Hydrogel Matrices-Experimental Studies Supported by Molecular Models Analysis. Catalysts 2020, 10, 489. [Google Scholar] [CrossRef]
- Şenel, M. Simple method for preparing glucose biosensor based on in-situ polypyrrole cross-linked chitosan/glucose oxidase/gold bionanocomposite film. Mater. Sci. Eng. C 2015, 48, 287–293. [Google Scholar] [CrossRef]
- Olejnik, A.; Śliwiński, G.; Karczewski, J.; Ryl, J.; Siuzdak, K.; Grochowska, K. Laser-assisted approach for improved performance of Au-Ti based glucose sensing electrodes. Appl. Surf. Sci. 2020, 543, 148788. [Google Scholar] [CrossRef]
- Kong, F.Y.; Gu, S.X.; Li, W.W.; Chen, T.T.; Xu, Q.; Wang, W. A paper disk equipped with graphene/polyaniline/Au nanoparticles/glucose oxide biocomposite modified screen-printed electrode: Toward whole blood glucose determination. Biosens. Bioelectron. 2014, 56, 77–82. [Google Scholar] [CrossRef]
- Das, P.; Das, M.; Chinnadayyala, S.R.; Singha, I.M.; Goswami, P. Recent advances on developing 3rd generation enzyme electrode for biosensor applications. Biosens. Bioelectron. 2016, 79, 386–397. [Google Scholar] [CrossRef]
- Casalini, S.; Bortolotti, C.A.; Leonardi, F.; Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 2017, 46, 40–71. [Google Scholar] [CrossRef]
- Shervedani, R.K.; Mehrjardi, A.H.; Zamiri, N. A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 2006, 69, 201. [Google Scholar] [CrossRef]
- Zhong, X.; Yuan, R.; Chai, Y.; Liu, Y.; Dai, J.; Tang, D. Glucose biosensor based on self-assembled gold nanoparticles and double-layer 2d-network (3-mercaptopropyl)-trimethoxysilane polymer onto gold substrate. Sens. Actuators B Chem. 2005, 104, 191–198. [Google Scholar] [CrossRef]
- Sapountzi, E.; Braiek, M.; Vocanson, F.; Chateaux, J.F.; Jaffrezic-Renault, N.; Lagarde, F. Gold nanoparticles assembly on electrospun poly(vinylalcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sens. Actuators B Chem. 2017, 238, 392–401. [Google Scholar] [CrossRef]
- Lipińska, W.; Ryl, J.; Ślepski, P.; Siuzdak, K.; Grochowska, K. Exploring multi-step glucose oxidation kinetics at GOx-functionalized nanotextured gold surfaces with differential impedimetric technique. Measurement 2021, 174, 109015. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Z.; Zhou, J. Hamiltonian replica exchange simulations of glucose oxidase adsorption on charged surfaces. Phys. Chem. Chem. Phys. 2018, 20, 14587–14596. [Google Scholar] [CrossRef] [PubMed]
- Aksorn, J.; Teepoo, S. Development of the simultaneous colorimetric enzymatic detection of sucrose, fructose and glucose using a microfluidic paper-based analytical device. Talanta 2020, 207, 120302. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Ma, Y.; Chen, M.; Ambrosi, A.; Ding, C.; Luo, X. Electrochemical Biosensor with Enhanced Antifouling Capability for COVID-19 Nucleic Acid Detection in Complex. Anal. Chem. 2021, 93, 5963–5971. [Google Scholar] [CrossRef]
- Min, J.; Sempionatto, J.R.; Teymourian, H.; Wang, J.; Gao, W. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 2020, 172, 112750–112800. [Google Scholar] [CrossRef]
Electrode | AuNPs Support Material | AuNPs Fabrication Method | Sensitivity (µA cm−2 mM−1) | Linear Range (mM) | Detection Limit (µM) | Ref. |
---|---|---|---|---|---|---|
GO-COO Au/GCE | carboxylated graphene oxide/glassy carbon electrode (GCE) | HAuCl4 chemical reduction | 20.20 | 0.02–4.58 | 6.00 | [43] |
Au/LSGEs | laser-scribed graphene | electrodeposition | - | 0.01–10.00 | 6.30 | [44] |
Au/PPyNFs | polypyrrole nanofibers/GCE | HAuCl4 chemical reduction | 1.003 | 0.20–13.00 | - | [45] |
AuNPs/CuO NWs | copper oxide nanowires/Cu | HAuCl4 chemical reduction | 4398.80 | 0.0005–5.90 | 0.50 | [46] |
AuNPs/ZnO NRs | zinc oxide nanorods/ITO | HAuCl4 chemical reduction | 157.30 | 0.50–10.00 | 0.06 mM | [47] |
AuNPs/ITO | indium tin oxide | electrodeposition | 23.00 | up to 11.00 | 5.00 | [48] |
GNP/MWNT CR | multi-walled carbon nanotubes/Au | electrodeposition | - | up to 5.00 | 0.50 | [49] |
Au/ITO | indium tin oxide | ion implantation | - | 0.001–0.17 and0.20–15.00 | 0.40 | [50] |
AuNPs/TiO2NRs/FTO | fluorine tin oxide (FTO) | thermal evaporation | 0.01 | 0–10.00 and 10.00–30.00 | - | [51] |
Electrode | IM | Sensitivity (µA cm−2 mM−1) | Linear Range (mM) | Detection Limit (mM) | Ref. |
---|---|---|---|---|---|
Graphene-GOx-GNP | CB | - | - | 0.03 mg/mL | [56] |
GOD/Fc/Au/SLG/GCE | CB | - | 0.10 nM–5.00 | 0.10 nM | [57] |
GR/PPD/(AuNP)PPCA-GOx | CB | 0.14 µAmM−1 | 0.20–150.00 | 0.08 | [58] |
GOx/Au-ZnO/GCE | A | 19.85 | 1.00–20.00 | 0.02 | [59] |
GR-MWNTs/AuNPs/GOx | A | 0.70 | 10.00 µM–2.00 | 4.10 µM | [60] |
AuNP/GOx-AuNP | A | 0.52 | 0.10–5.00 | 63.00 µM | [61] |
PHCQU/AuNPs/GOx | CL | 0.13 µAmM−1 | 0.75–3.13 | 0.02 | [62] |
Nafion/GOx/AuNPs/OPPy/AuMNs | CL | 8.09 μA/mM | 0–2.60 | 40.00 μM | [63] |
Fe3O4-CS-Au-GOx | CL | - | 5.00–30.00 | 0.55 | [64] |
M3(GOx)/Au-TiND | CL | 25.74 | 0.05–3.05 | 7.61 μM | [27] |
GCE/Chi-Py/Au/GOx | E | 0.58 μA/mM | 1.00–20.00 | - | [66] |
CHIT(GOx)/AuLr-TiND | E | 23.47 10.63 | 0.04–15.05 15.05–40.00 | 1.75 μM | [28] |
Au-MPA-GOx SAMs | S | - | 0–10.00 | - | [71] |
2dMPS-AuNPs-GOx | S | - | 0.40–52.80 nM | 0.10 nM | [72] |
ATP/PVA/PEI/AuNPs/GOx | S | - | 0–1.00 | - | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lipińska, W.; Grochowska, K.; Siuzdak, K. Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. Nanomaterials 2021, 11, 1156. https://doi.org/10.3390/nano11051156
Lipińska W, Grochowska K, Siuzdak K. Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. Nanomaterials. 2021; 11(5):1156. https://doi.org/10.3390/nano11051156
Chicago/Turabian StyleLipińska, Wiktoria, Katarzyna Grochowska, and Katarzyna Siuzdak. 2021. "Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors" Nanomaterials 11, no. 5: 1156. https://doi.org/10.3390/nano11051156
APA StyleLipińska, W., Grochowska, K., & Siuzdak, K. (2021). Enzyme Immobilization on Gold Nanoparticles for Electrochemical Glucose Biosensors. Nanomaterials, 11(5), 1156. https://doi.org/10.3390/nano11051156