Metal-N4@Graphene as Multifunctional Anchoring Materials for Na-S Batteries: First-Principles Study
Abstract
:1. Introduction
2. Computational Method
3. Results and Discussion
3.1. Structures and Electronic Properties of Na2Sn Species and Metal-N4@Graphene
3.2. Adsorption of Na2Sn Species on Pristine and Transition Metal-N4 Co-Doped Graphene
3.3. Electrocatalytic Performance of Iron for Na2Sn Species on Fe-N4@Graphene
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. A Progress Report on Metal–Sulfur Batteries. Adv. Funct. Mater. 2020, 30, 2004084. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.M. Building Better Batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zou, J.; Cheng, H.; Gu, Y.; Lu, Z. High Energy Batteries Based on Sulfur Cathode. Green Energy Environ. 2019, 4, 345–359. [Google Scholar] [CrossRef]
- Salama, M.; Rosy; Attias, R.; Yemini, R.; Gofer, Y.; Aurbach, D.; Noked, M. Metal–Sulfur Batteries: Overview and Research Methods. ACS Energy Lett. 2019, 4, 436–446. [Google Scholar] [CrossRef]
- Chung, S.H.; Manthiram, A. Current Status and Future Prospects of Metal-Sulfur Batteries. Adv. Mater. 2019, 31, e1901125. [Google Scholar] [CrossRef]
- Hong, X.; Mei, J.; Wen, L.; Tong, Y.; Vasileff, A.J.; Wang, L.; Liang, J.; Sun, Z.; Dou, S.X. Nonlithium Metal-Sulfur Batteries: Steps toward a Leap. Adv. Mater. 2019, 31, e1802822. [Google Scholar] [CrossRef]
- Wang, R.; Dai, X.; Qian, Z.; Zhong, S.; Chen, S.; Fan, S.; Zhang, H.; Wu, F. Boosting Lithium Storage in Free-Standing Black Phosphorus Anode Via Multifunction of Nanocellulose. ACS Appl. Mater. Interfaces 2020, 12, 31628–31636. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Y.; Yang, K.; Zheng, J.; Li, Y.; Qian, Z.; He, Z.; Zhong, S. One-Time Sintering Process to Modify xLi2MnO3 (1-X)LiMo2 Hollow Architecture and Studying Their Enhanced Electrochemical Performances. J. Energy Chem. 2020, 50, 271–279. [Google Scholar] [CrossRef]
- Rauh, R.D.; Shuker, F.S.; Marston, J.M.; Brummer, S.B. Formation of Lithium Polysulfides in Aprotic Media. J. Inorg. Nucl. Chem. 1977, 39. [Google Scholar] [CrossRef]
- Xin, S.; Yin, Y.X.; Guo, Y.G.; Wan, L.J. A High-Energy Room-Temperature Sodium-Sulfur Battery. Adv. Mater. 2014, 26, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Seh, Z.W.; Sun, J.; Sun, Y.; Cui, Y. A Highly Reversible Room-Temperature Sodium Metal Anode. ACS Cent. Sci. 2015, 1, 449–455. [Google Scholar] [CrossRef]
- Wenzel, S.; Metelmann, H.; Raiß, C.; Dürr, A.K.; Janek, J.; Adelhelm, P. Thermodynamics and Cell Chemistry of Room Temperature Sodium/Sulfur Cells with Liquid and Liquid/Solid Electrolyte. J. Power Sources 2013, 243, 758–765. [Google Scholar] [CrossRef]
- Adelhelm, P.; Hartmann, P.; Bender, C.L.; Busche, M.; Eufinger, C.; Janek, J. From Lithium to Sodium: Cell Chemistry of Room Temperature Sodium-Air and Sodium-Sulfur Batteries. Beilstein J. Nanotechnol. 2015, 6, 1016–1055. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X. Ambient Temperature Sodium-Sulfur Batteries. Small 2015, 11, 2108–2114. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Yang, J.; Lai, W.; Chou, S.L.; Gu, Q.F.; Liu, H.K.; Zhao, D.; Dou, S.X. Achieving High-Performance Room-Temperature Sodium-Sulfur Batteries with S@Interconnected Mesoporous Carbon Hollow Nanospheres. J. Am. Chem. Soc. 2016, 138, 16576–16579. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, G.; Chen, Z.; Dai, H.; Hu, Q.; Liao, S.; Sun, S. Emerging Applications of Atomic Layer Deposition for Lithium-Sulfur and Sodium-Sulfur Batteries. Energy Storage Mater. 2020, 26, 513–533. [Google Scholar] [CrossRef]
- Larcher, D.; Tarascon, J.M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef]
- Slater, M.D.; Kim, D.; Lee, E.; Johnson, C.S. Sodium-Ion Batteries. Adv. Funct. Mater. 2013, 23, 947–958. [Google Scholar] [CrossRef]
- Wei, S.; Xu, S.; Agrawral, A.; Choudhury, S.; Lu, Y.; Tu, Z.; Ma, L.; Archer, L.A. A Stable Room-Temperature Sodium-Sulfur Battery. Nat. Commun. 2016, 7, 11722. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Manthiram, A. Performance Enhancement and Mechanistic Studies of Room-Temperature Sodium-Sulfur Batteries with a Carbon-Coated Functional Nafion Separator and a Na2s/Activated Carbon Nanofiber Cathode. Chem. Mater. 2016, 28, 896–905. [Google Scholar] [CrossRef]
- Ye, C.; Chao, D.; Shan, J.; Li, H.; Davey, K.; Qiao, S.-Z. Unveiling the Advances of 2d Materials for Li/Na-S Batteries Experimentally and Theoretically. Matter 2020, 2, 323–344. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.-Q.; Liu, X.-F.; Zhang, Q.; Chen, C.-M.; Zhao, M.-Q.; Zhang, S.-M.; Zhu, W.; Qian, W.-Z.; Wei, F. Entrapment of Sulfur in Hierarchical Porous Graphene for Lithium-Sulfur Batteries with High Rate Performance from −40 to 60°C. Nano Energy 2013, 2, 314–321. [Google Scholar] [CrossRef]
- Liang, Z.; Fan, X.; Singh, D.J.; Zheng, W.T. Adsorption and Diffusion of Li with S on Pristine and Defected Graphene. Phys. Chem. Chem. Phys. 2016, 18, 31268–31276. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Dong, Y.; Li, H.; Zhao, Z.; Wu, H.B.; Hao, C.; Liu, S.; Qiu, J.; Lou, X.W. Enhancing Lithium-Sulphur Battery Performance by Strongly Binding the Discharge Products on Amino-Functionalized Reduced Graphene Oxide. Nat. Commun. 2014, 5, 5002. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Yuan, R.-M.; Feng, J.-M.; Zhang, Q.; Huang, J.-X.; Fu, G.; Zheng, M.-S.; Ren, B.; Dong, Q.-F. Conductive Lewis Base Matrix to Recover the Missing Link of Li2S8 During the Sulfur Redox Cycle in Li–S Battery. Chem. Mater. 2015, 27, 2048–2055. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, W.; Zhao, W.; Li, G.; Hou, Y.; Liu, M.; Zhou, L.; Ye, F.; Li, H.; Wei, Z.; et al. High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene. Nano Lett. 2014, 14, 4821–4827. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, P.; Man, X.-L.; Wang, D.; Huang, J.; Shu, H.-B.; Liu, Z.-G.; Wang, L. Fe, N Co-Doped Graphene as a Multi-Functional Anchor Material for Lithium-Sulfur Battery. J. Phys. Chem. Solids 2019, 126, 280–286. [Google Scholar] [CrossRef]
- Sajjad, M.; Hussain, T.; Singh, N.; Larsson, J.A. Superior Anchoring of Sodium Polysulfides to the Polar C2N 2D Material: A Potential Electrode Enhancer in Sodium-Sulfur Batteries. Langmuir 2020, 36, 13104–13111. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Sajjad, M.; Singh, D.; Bae, H.; Lee, H.; Larsson, J.A.; Ahuja, R.; Karton, A. Sensing of Volatile Organic Compounds on Two-Dimensional Nitrogenated Holey Graphene, Graphdiyne, and Their Heterostructure. Carbon 2020, 163, 213–223. [Google Scholar] [CrossRef]
- Xia, G.; Zhang, L.; Chen, X.; Huang, Y.; Sun, D.; Fang, F.; Guo, Z.; Yu, X. Carbon Hollow Nanobubbles on Porous Carbon Nanofibers: An Ideal Host for High-Performance Sodium-Sulfur Batteries and Hydrogen Storage. Energy Storage Mater. 2018, 14, 314–323. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, X.; Wu, D.; Zhao, X.; Zhou, Z. S-Doped N-Rich Carbon Nanosheets with Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1604108. [Google Scholar] [CrossRef]
- Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E.F.; Zelenay, P.; et al. Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. ACS Nano 2015, 9, 12496–12505. [Google Scholar] [CrossRef]
- Tylus, U.; Jia, Q.; Hafiz, H.; Allen, R.J.; Barbiellini, B.; Bansil, A.; Mukerjee, S. Engendering Anion Immunity in Oxygen Consuming Cathodes Based on Fe-Nx Electrocatalysts: Spectroscopic and Electrochemical Advanced Characterizations. Appl. Catal. B 2016, 198, 318–324. [Google Scholar] [CrossRef] [Green Version]
- Allerdt, A.; Hafiz, H.; Barbiellini, B.; Bansil, A.; Feiguin, A.E. Many-Body Effects in FeN4 Center Embedded in Graphene. Appl. Sci. 2020, 10, 2542. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Chen, Z.; Zhao, J.; Ding, Y. Metal-N4/Graphene as an Efficient Anchoring Material for Lithium-Sulfur Batteries: A Computational Study. Diam. Relat. Mater. 2018, 90, 72–78. [Google Scholar] [CrossRef]
- Zhang, B.W.; Sheng, T.; Wang, Y.X.; Chou, S.; Davey, K.; Dou, S.X.; Qiao, S.Z. Long-Life Room-Temperature Sodium-Sulfur Batteries by Virtue of Transition-Metal-Nanocluster-Sulfur Interactions. Angew. Chem. Int. Ed. Engl. 2019, 58, 1484–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.W.; Sheng, T.; Liu, Y.D.; Wang, Y.X.; Zhang, L.; Lai, W.H.; Wang, L.; Yang, J.; Gu, Q.F.; Chou, S.L.; et al. Atomic Cobalt as an Efficient Electrocatalyst in Sulfur Cathodes for Superior Room-Temperature Sodium-Sulfur Batteries. Nat. Commun. 2018, 9, 4082. [Google Scholar] [CrossRef]
- Ma, Q.; Du, G.; Zhong, W.; Du, W.; Bao, S.J.; Xu, M.; Li, C. Template Method for Fabricating Co and Ni Nanoparticles/Porous Channels Carbon for Solid-State Sodium-Sulfur Battery. J. Colloid Interface Sci. 2020, 578, 710–716. [Google Scholar] [CrossRef]
- Zeng, Q.-W.; Hu, R.-M.; Chen, Z.-B.; Shang, J.-X. Single-Atom Fe and N Co-Doped Graphene for Lithium-Sulfur Batteries: A Density Functional Theory Study. Mater. Res. Express. 2019, 6, 095620. [Google Scholar] [CrossRef]
- Zhang, L.; Liang, P.; Shu, H.B.; Man, X.L.; Du, X.Q.; Chao, D.L.; Liu, Z.G.; Sun, Y.P.; Wan, H.Z.; Wang, H. Design Rules of Heteroatom-Doped Graphene to Achieve High Performance Lithium-Sulfur Batteries: Both Strong Anchoring and Catalysing Based on First Principles Calculation. J. Colloid Interface Sci. 2018, 529, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.H.; Wang, H.; Zheng, L.; Jiang, Q.; Yan, Z.C.; Wang, L.; Yoshikawa, H.; Matsumura, D.; Sun, Q.; Wang, Y.X.; et al. General Synthesis of Single-Atom Catalysts for Hydrogen Evolution Reactions and Room-Temperature Na-S Batteries. Angew. Chem. Int. Ed. Engl. 2020, 59, 22171–22178. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Dion, M.; Rydberg, H.; Schroder, E.; Langreth, D.C.; Lundqvist, B.I. Van Der Waals Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Murray, É.D.; Kong, L.; Lundqvist, B.I.; Langreth, D.C. Higher-Accuracy Van Der Waals Density Functional. Phys. Rev. B 2010, 82, 081101. [Google Scholar] [CrossRef] [Green Version]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901–9904. [Google Scholar] [CrossRef] [Green Version]
- Henkelman, G.; Jónsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. J. Chem. Phys. 2000, 113, 9978–9985. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Park, J.-Y.; Kim, C.; Park, J.-W.; Ahn, J.-P.; Ahn, J.-H.; Kim, K.-W.; Ahn, H.-J. Sodium Polysulfides During Chargedischarge of the Room-Temperature Nas Battery Using Tegdme Electrolyte. J. Electrochem. Soc. 2016, 163, A611. [Google Scholar] [CrossRef]
- Jand, S.P.; Chen, Y.; Kaghazchi, P. Comparative Theoretical Study of Adsorption of Lithium Polysulfides (Li2Sx) on Pristine and Defective Graphene. J. Power Sources 2016, 308, 166–171. [Google Scholar] [CrossRef]
Na2S | Na2S2 | Na2S4 | Na2S6 | Na2S8 | Cyclo-S8 | |
---|---|---|---|---|---|---|
dNa-S | 2.464 | 2.581 | 2.725 | 2.760 | 2.734 | - |
dS-S | - | 2.277 | 2.135 | 2.117 | 2.093 | 2.097 |
Fe-N4@G | Na2S | Na2S2 | Na2S4 | Na2S6 | Na2S8 | Cyclo-S8 |
---|---|---|---|---|---|---|
Eb | 1.092 | 1.358 | 1.072 | 1.158 | 1.352 | 0.924 |
dNa-N | 2.569 | 2.790 | 2.707 | 2.708 | 2.920 | - |
dFe-S | - | 2.299 | 2.281 | 2.299 | 2.137 | 2.111 |
dNa-S | 2.514 | 2.679 | 2.747 | 2.759 | 2.843 | - |
dS-S | - | 2.175 | 2.139 | 2.064 | 2.235 | 2.175 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Liu, D.; Sun, Y.; Qian, Z.; Zhong, S.; Wang, R. Metal-N4@Graphene as Multifunctional Anchoring Materials for Na-S Batteries: First-Principles Study. Nanomaterials 2021, 11, 1197. https://doi.org/10.3390/nano11051197
Yang K, Liu D, Sun Y, Qian Z, Zhong S, Wang R. Metal-N4@Graphene as Multifunctional Anchoring Materials for Na-S Batteries: First-Principles Study. Nanomaterials. 2021; 11(5):1197. https://doi.org/10.3390/nano11051197
Chicago/Turabian StyleYang, Kaishuai, Dayong Liu, Yiling Sun, Zhengfang Qian, Shengkui Zhong, and Renheng Wang. 2021. "Metal-N4@Graphene as Multifunctional Anchoring Materials for Na-S Batteries: First-Principles Study" Nanomaterials 11, no. 5: 1197. https://doi.org/10.3390/nano11051197
APA StyleYang, K., Liu, D., Sun, Y., Qian, Z., Zhong, S., & Wang, R. (2021). Metal-N4@Graphene as Multifunctional Anchoring Materials for Na-S Batteries: First-Principles Study. Nanomaterials, 11(5), 1197. https://doi.org/10.3390/nano11051197