Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments
Abstract
:1. Introduction
2. TMOs-Based Electrode Materials
2.1. RuO2
2.1.1. RuO2-Based Composite Electrodes
2.1.2. Hydrographic RuO2
2.2. Co3O4
2.2.1. Co3O4 Nanomaterials
2.2.2. A Strategy for Preparation of Co3O4 Nanomaterials
2.2.3. Electrode Materials on Conductive Substrates
2.3. MnO2
2.3.1. Carbon Materials@MnO2 Composite Electrode
2.3.2. Introduction of Battery-Type Metal Oxides
2.4. ZnO
2.4.1. ZnO-Based Composite Electrode
2.4.2. Problems of ZnO-Based Electrode
2.5. XCo2O4 (X = Mn, Cu, Ni)
2.5.1. Core–Shell Structure for MCo2O4-Based Electrode
2.5.2. Introduction of Transition Metal Sulfides Materials
2.5.3. Introduction of Oxygen Vacancies
2.6. AMoO4 (A = Co, Mn, Ni, Zn)
2.6.1. Core–Shell Structure for AMoO4-Based Electrode
2.6.2. Modification of Quantum Dots
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, P.Y.; Zhao, J.J.; Dong, Z.P.; Liu, Z.L.; Wang, Y.Q. Interwoving Polyaniline and a Metal-organic Framework Grown in Situ for Enhanced Supercapacitor Behavior. J. Alloys Compd. 2021, 854, 157181. [Google Scholar]
- Prakash, D.; Manivannan, S. Unusual Battery Type Pseudocapacitive Behaviour of Graphene Oxynitride Electrode: High Energy Solid-state Asymmetric Supercapacitor. J. Alloys Compd. 2021, 854, 156853. [Google Scholar] [CrossRef]
- Sethi, M.; Shenoy, U.S.; Bhat, D.K. Simple Solvothermal Synthesis of Porous Graphene-NiO Nanocomposites with High Cyclic Stability for Supercapacitor Application. J. Alloys Compd. 2021, 854, 157190. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Li, F.Z.; Ma, Z.Q.; Wang, Q.; Qu, F.Y. Battery-type Phosphorus Doped FeS2 Grown on Graphene as Anode for Hybrid Supercapacitor with Enhanced Specific capacity. J. Alloys Compd. 2021, 854, 157114. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, M.F.; Mamat, X. Nitrogen-doped Macro-meso-micro Hierarchical Ordered Porous Carbon Derived from ZIF-8 for Boosting Supercapacitor Performance. Appl. Surf. Sci. 2021, 540, 148352. [Google Scholar]
- Zan, G.T.; Wu, T.; Chen, H.X.; Dong, F.Q.; Wu, Q.S. BiVO4 Nanocoral Superstructures and Their Excellent Electrical/optical Dual-functions. J. Alloys Compd. 2021, 852, 157035. [Google Scholar]
- Wu, S.R.; Liu, J.B.; Wang, H.; Yan, H. A Review of Performance Optimization of MOF-derived Metal Oxide as Electrode Materials for Supercapacitors. Int. J. Energy Res. 2019, 43, 697–716. [Google Scholar]
- Anand, S.; Ahmad, M.W.; Al Saidi, A.K.A.; Yang, D.-J.; Choudhury, A. Polyaniline Nanofiber Decorated Carbon Nanofiber Hybrid Mat for Flexible Electrochemical Supercapacitor. Mater. Chem. Phys. 2020, 254, 123480. [Google Scholar] [CrossRef]
- Hu, Q.L.; Yue, B.; Shao, H.Y.; Yang, F.; Wang, J.H.; Wang, Y.; Liu, J.H. Facile Syntheses of Perovskite Type LaMO3 (M = Fe, Co, Ni) Nanofibers for High Performance Supercapacitor Electrodes and Lithium-ion Battery Anodes. J. Alloys Compd. 2021, 852, 157002. [Google Scholar]
- Kumar, K.S.; Choudhary, N.; Pandey, D.; Hurtado, L.; Chung, H.-S.; Tetard, L.; Jung, Y.W.; Tomas, J. High-performance Flexible Asymmetric Supercapacitor Based on rGO Anode and WO3/WS2 Core/shell Nanowire Cathode. Nanotechnology 2020, 31, 435405. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.H.; Gao, X.L.; Cui, Z.X.; Jiao, Y.; Zhang, Q.; Yu, L.Y.; Dong, L.Y. Facile Synthesis of Binary Transition Metal Sulfide Tubes Derived from NiCo-MOF-74 for High-performance Supercapacitors. Energy Technol. 2019, 7, 1900018. [Google Scholar]
- Shin, S.Y.; Shin, M.W. Nickel Metal–organic Framework (Ni-MOF) Derived NiO/C@CNF Composite for the Application of High Performance Self-standing Supercapacitor Electrode. Appl. Surf. Sci. 2021, 540, 148295. [Google Scholar]
- Liu, Y.M.; Murtaza, I.; Shuja, A.; Meng, H. Interfacial Modification for Heightening the Interaction between PEDOT and Substrate Towards Enhanced Flexible Solid Supercapacitor Performance. Chem. Eng. J. 2020, 379, 122326. [Google Scholar]
- Gao, Y.-P.; Zhai, Z.-B.; Wang, Q.-Q.; Hou, Z.-Q.; Huang, K.-J. Cycling Profile of Layered MgAl2O4/reduced graphene oxide Composite for Asymmetrical Supercapacitor. J. Colloid Interface Sci. 2019, 539, 38–44. [Google Scholar]
- Meng, Z.H.; Yan, W.; Zou, M.Y.; Miao, H.; Ma, F.X.; Patil, A.B.; Yu, R.; Liu, X.Y.; Liu, N.B. Tailoring NiCoAl Layered Double Hydroxide Nanosheets for Assembly of High-performance Asymmetric Supercapacitors. J. Colloid Interface Sci. 2021, 583, 722–733. [Google Scholar]
- Gao, Y.-P.; Huang, K.-J. NiCo2S4 Materials for Supercapacitor Applications. Chem. Asian J. 2017, 12, 1969–1984. [Google Scholar]
- Du, Y.Q.; Xiao, P.; Yuan, J.; Chen, J.W. Research Progress of Graphene-Based Materials on Flexible Supercapacitors. Coatings 2020, 10, 892. [Google Scholar]
- Chameh, B.; Moradi, M.; Hajati, S.; Hessari, F.A. Design and Construction of ZIF (8 and 67) Supported Fe3O4 Composite as Advanced Materials of High Performance Supercapacitor. Phys. E Syst. Nanostruct. 2021, 126, 114442. [Google Scholar] [CrossRef]
- Niu, W.S.; Xiao, Z.Y.; Wang, S.F.; Zhai, S.R.; Qin, L.F.; Zhao, Z.Y.; An, Q.D. Synthesis of Nickel Sulfide-supported on Porous Carbon from a Natural Seaweed-derived Polysaccharide for High-performance Supercapacitors. J. Alloys Compd. 2021, 853, 157123. [Google Scholar]
- Pettong, T.; Iamprasertkun, P.; Krittayavathananon, A.; Sukha, P.; Sirisinudomkit, P.; Seubsai, A.; Chareonpanich, M.; Kongkachuichay, P.; Limtrakul, J.; Sawangphruk, M. High-performance Asymmetric Supercapacitors of MnCo2O4 Nanofibers and N-doped Reduced Graphene Oxide Aerogel. ACS Appl. Mater. Inter. 2016, 8, 34045–34053. [Google Scholar] [CrossRef]
- Zhou, W.; Han, G.Y.; Xiao, Y.M.; Chang, Y.Z.; Yuan, W.; Li, Y.P.; Liu, C.X.; Zhang, Y. Polypyrrole Doped with Dodecyl Benzene Sulfonate Electrodeposited on Carbon Fibers for Flexible Capacitors with High-performance. Electrochim. Acta 2015, 176, 594–603. [Google Scholar]
- Sun, L.; Fu, Q.; Pan, C.X. Mn3O4 Embedded 3D Multi-heteroatom Codoped Carbon Sheets/carbon Foams Composites for High-performance Flexible Supercapacitors. J. Alloys Compd. 2020, 849, 156666. [Google Scholar]
- Liu, S.L.; Feng, Q.C.; Zhang, C.; Liu, T.X. Molten Salt-confined Pyrolysis towards Carbon Nanotube-backboned Microporous Carbon for High-energy-density and Durable Supercapacitor Electrodes. Nanotechnology 2021, 32, 095605. [Google Scholar]
- Zhang, M.M.; Song, Z.X.; Liu, H.; Wang, A.; Shao, S.Y. MoO2 Coated Few Layers of MoS2 and FeS2 Nanoflower Decorated S-doped Graphene Interoverlapped Network for High-energy Asymmetric Supercapacitor. J. Colloid Interface Sci. 2021, 584, 418–428. [Google Scholar] [CrossRef]
- Wu, P.; Cheng, S.; Yao, M.H.; Yang, L.F. A low-cost, Self-standing NiCo2O4@CNT/CNT Multilayer Electrode for Flexible Asymmetric Solid-state Supercapacitors. Adv. Funct. Mater. 2017, 27, 1702160. [Google Scholar]
- Liu, Y.B.; Huang, G.X.; Li, Y.Y.; Yao, Y.H.; Xing, B.L.; Liu, Q.R.; Jia, J.B.; Zhang, C.X. Structural Evolution of Porous Graphitic Carbon Nanosheets Based on Quinonyl Decomposition for Supercapacitor Electrodes. Appl. Surf. Sci. 2021, 537, 147824. [Google Scholar]
- Shi, Y.; Sun, L.; Zhang, Y.X.; Si, H.C.; Sun, C.; Gu, J.L.; Gong, Y.; Li, X.W.; Zhang, Y.H. SnS2 Nanodots Decorated on RGO Sheets with Enhanced Pseudocapacitive Performance for Asymmetric Supercapacitors. J. Alloys Compd. 2021, 853, 156903. [Google Scholar]
- Hao, J.Y.; Zou, X.F.; Feng, L.; Li, W.P.; Xiang, B.; Hu, Q.; Liang, X.Y.; Wu, Q.B. Facile Fabrication of Core-shell Structured Ni(OH)2/Ni(PO3)2 Composite via One-step Electrodeposition for High Performance Asymmetric Supercapacitor. J. Colloid Interface Sci. 2021, 583, 243–254. [Google Scholar]
- Zhai, S.X.; Jin, K.; Zhou, M.; Fan, Z.Z.; Zhao, H.; Li, X.Y.; Zhao, Y.P.; Ge, F.Y.; Cai, Z.S. A Novel High Performance Flexible Supercapacitor Based on Porous Carbonized cotton/ZnO Nanoparticle/CuS Micro-sphere. Colloids Surf. A 2020, 584, 124025. [Google Scholar]
- He, W.D.; Wang, C.G.; Zhuge, F.W.; Deng, X.L.; Xu, X.J.; Zhai, T.Y. Flexible and High Energy Density Asymmetrical Supercapacitors Based on Core/shell Conducting Polymer Nanowires/manganese Dioxide Nanoflakes. Nano Energy 2017, 35, 242–250. [Google Scholar]
- Liu, B.G.; Shi, R.; Chen, R.F.; Wang, C.H.; Zhou, K.; Ren, Y.D.; Zeng, Z.; Liu, Y.Y.; Li, L.Q. Optimized Synthesis of Nitrogen-doped Carbon with Extremely High Surface Area for Adsorption and Supercapacitor. Appl. Surf. Sci. 2021, 538, 147961. [Google Scholar]
- Padya, B.; Kali, R.; Enaganti, P.K.; Narasaiah, N.; Jain, P.K. Facile Synthesis and Frequency-response Behavior of Supercapacitor Electrode Based on Surface-etched Nanoscaled-graphene Platelets. Colloid. Surf. A 2021, 609, 125587. [Google Scholar] [CrossRef]
- Avasthi, P.; Arya, N.; Singh, M.; Balakrishnan, V. Fabrication of iron Oxide-CNT Based Flexible Asymmetric Solid State Supercapacitor Device with High Cyclic Stability. Nanotechnology 2020, 31, 435402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, L.; Cheng, L.; Yang, D.D.; Wan, L.; Chen, J.; Xie, M.J. Synthesis of Faradaic-active N,O-doped Carbon Nanosheets from M-trihydroxybenzene and Piperazine for High-performance Supercapacitor. Appl. Surf. Sci. 2021, 538, 148040. [Google Scholar] [CrossRef]
- Yang, G.J.; Park, S.J. MnO2 and Biomass-derived 3D Porous Carbon Composites Electrodes for High Performance Supercapacitor Applications. J. Alloys Compd. 2018, 741, 360–367. [Google Scholar]
- Li, C.J.; Dong, X.Q.; Zhang, Y.C.; Hu, J.; Liu, W.W.; Cui, X.; Hao, A.Y. MnOx Nanosheets Anchored on a Bio-derived Porous Carbon Framework for High-performance Asymmetric Supercapacitors. Appl. Surf. Sci. 2020, 527, 146842. [Google Scholar]
- Chen, H.; Li, W.L.; He, M.; Chang, X.W.; Zheng, X.L.; Ren, Z.Y. Vertically Oriented Carbon Nanotube as a Stable Frame to Support the Co0.85Se Nanoparticles for High Performance Supercapacitor Electrode. J. Alloys Compd. 2021, 855, 157506. [Google Scholar]
- Wang, N.; Zhao, P.; Liang, K.; Yao, M.Q.; Yang, Y.; Hu, W.C. CVD-grown Polypyrrole Nanofilms on Highly Mesoporous Structure MnO2 for High Performance Asymmetric Supercapacitors. Chem. Eng. J. 2017, 307, 105–112. [Google Scholar]
- Kuo, C.-W.; Chang, J.-C.; Wu, B.-W.; Wu, T.-Y. Electrochemical Characterization of RuO2-Ta2O5/polyaniline Composites as Potential Redox Electrodes for Supercapacitors and Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2020, 45, 22223–22231. [Google Scholar]
- Ates, M.; Yildirim, M. The Synthesis of rGO/RuO2, rGO/PANI, RuO2/PANI and rGO/RuO2/PANI Nanocomposites and Their Supercapacitors. Polym. Bull. 2020, 77, 2285–2307. [Google Scholar]
- Wang, G.R.; Jin, Z.L.; Guo, Q.J. Ordered Self-supporting NiV LDHs@P-Nickel Foam Nano-array as High-Performance Supercapacitor Electrode. J. Colloid. Interface Sci. 2021, 583, 1–12. [Google Scholar]
- Wu, D.J.; Han, H.C.; Hong, X.K.; Tao, S.; Xu, S.H.; Qian, B.; Wang, L.W.; Chen, X.F.; Chu, P.K. A Novel Self-branching MnCo2O4/nanographene Hybrid Composites on Macroporous Electrically Conductive Network as Bifunctional Electrodes for Boosting Miniature Supercapacitors and Sodium Ion Batteries. J. Alloys Compd. 2020, 846, 155720. [Google Scholar]
- Saren, P.; Adhikari, A.D.; Khan, S.; Nayak, G.C. Self-Assembled GNS Wrapped Flower-like MnCo2O4 Nanostructures for Supercapacitor Application. J. Solid State Chem. 2019, 271, 282–291. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Atchudan, R.; Lee, Y.R. Facile Synthesis of Carbon Encapsulated RuO2 Nanorods for Supercapacitor and Electrocatalytic Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2019, 44, 2323–2329. [Google Scholar] [CrossRef]
- Ma, L.B.; Shen, X.P.; Zhou, H.; Ji, Z.Y.; Chen, K.M.; Zhu, G.X. High Performance Supercapacitor Electrode Materials Based on Porous NiCo2O4 Hexagonal Nanoplates/reduced Graphene Oxide Composites. Chem. Eng. J. 2015, 262, 980–988. [Google Scholar]
- Lei, Y.; Li, J.; Wang, Y.Y.; Gu, L.; Chang, Y.F.; Yuan, H.Y.; Xiao, D. Rapid Microwave-assisted Green Synthesis of 3D Hierarchical Flower-shaped NiCo2O4 Microsphere for High-performance Supercapacitor. ACS Appl. Mater. Inter. 2014, 6, 1773–1780. [Google Scholar]
- Liu, Y.J.; Zhang, X.; Matras-Postolek, K.; Yang, P. Ni2P Nanosheets Modified N-doped Hollow Carbon Spheres towards Enhanced Supercapacitor Performance. J. Alloys Compd. 2020, 854, 157111. [Google Scholar]
- Samuel, E.; Aldalbahi, A.; El-Newehy, M.; El-Hamshary, H.; Yoon, S.S. Nickel Ferrite Beehive-like Nanosheets for Binder-free and High-energy-storage Supercapacitor Electrodes. J. Alloys Compd. 2021, 852, 156929. [Google Scholar] [CrossRef]
- Yi, M.J.; Lu, B.B.; Zhang, X.T.; Tan, Y.B.; Zhu, Z.Y.; Pan, Z.C.; Zhang, J.H. Ionic Liquid-assisted Synthesis of Nickel Cobalt Phosphide Embedded in N,P Codoped-carbon with Hollow and Folded Structures for Efficient Hydrogen Evolution Reaction and supercapacitor. Appl. Catal. B. 2021, 283, 119635. [Google Scholar]
- Samuel, E.; Joshi, B.; Kim, Y.I.; Aldalbahi, A.; Rahaman, M.; Yoon, S.S. ZnO/MnO × Nanoflowers for High-Performance Supercapacitor Electrodes. ACS Sustain. Chem. Eng. 2020, 8, 3697–3708. [Google Scholar] [CrossRef]
- Chen, H.Y.; Du, X.M.; Sun, J.L.; Wu, R.Z.; Wang, Y.; Xu, C.J. Template-free Synthesis of Novel Co3O4 Micro-bundles Assembled with Flakes for High-performance Hybrid Supercapacitors. Ceram. Int. 2021, 47, 716–724. [Google Scholar]
- Dai, M.Z.; Zhao, D.P.; Wu, X. Research Progress on Transition Metal Oxide Based Electrode Materials for Asymmetric Hybrid Capacitors. Chin. Chem. Lett. 2020, 31, 2177–2188. [Google Scholar]
- Hu, P.F.; Zhao, D.P.; Liu, H.Q.; Chen, K.F.; Xu, X. Engineering PPy decorated MnCo2O4 Urchins for Quasi-solid-state Hybrid Capacitors. CrystEngComm 2019, 21, 1600–1606. [Google Scholar]
- Pawar, S.M.; Pawar, B.S.; Babar, P.T.; Ahmed, A.T.A.; Chavan, H.S.; Jo, Y.; Cho, S.; Kim, J.; Hou, B.; Inamdar, A.I.; et al. Nanoporous CuCo2O4 nanosheets as a Highly Efficient Bifunctional Electrode for Supercapacitors and Water Oxidation Catalysis. Appl. Surf. Sci. 2019, 470, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Babulal, S.M.; Venkatesh, K.; Chen, T.W.; Chen, S.W.; Krishnapandi, A.; Rwei, S.P.; Ramaraj, S.K. Synthesis of MnMoO4 Nanorods by a Simple Co-Precipitation Method in Presence of Polyethylene Glycol for Pseudocapacitor Application. Int. J. Electrochem. Sci. 2020, 15, 7053–7063. [Google Scholar] [CrossRef]
- Yu, F.; Pang, L.; Wang, H.-X. Preparation of Mulberry-like RuO2 Electrode Material for Supercapacitors. Rare Met. 2021, 40, 440–447. [Google Scholar]
- Xie, Y.B.; Yao, C. Electrochemical Performance of RuO2-TiO2 Nanotube Hybrid Electrode Material. Mater. Res. Express 2019, 6, 125550. [Google Scholar]
- Xu, J.; Wang, Q.F.; Wang, X.W.; Xiang, Q.Y.; Liang, B.; Shen, G.Z. Flexible Asymmetric Supercapacitors Based upon Co9S8 Nanorod//CO3O4@RuO2 Nanosheet Arrays on Carbon Cloth. ACS Nano 2013, 7, 5453–5462. [Google Scholar]
- Manuraj, M.; Chacko, J.; Unni, K.N.N.; Rakhi, R.B. Heterostructured MoS2-RuO2 Nanocomposite: A Promising Electrode Material for Supercapacitors. J. Alloys Compd. 2020, 836, 155420. [Google Scholar] [CrossRef]
- Park, S.; Shin, D.; Yeo, T.; Seo, B.; Hwang, H.; Lee, J.; Choi, W. Combustion-driven Synthesis Route for Tunable TiO2/RuO2 Hybrid Composites as High-performance Electrode Materials for Supercapacitors. Chem. Eng. J. 2020, 384, 123269. [Google Scholar]
- Patil, A.M.; An, X.W.; Li, S.S.; Yue, X.Y.; Du, X.; Yoshida, A.; Hao, X.G.; Abudula, A.; Guan, G.Q. Fabrication of Three-dimensionally Heterostructured rGO/WO3·0.5H2O@Cu2S Electrodes for High-energy Solid-state Pouch-type Asymmetric Supercapacitor. Chem. Eng. J. 2021, 403, 126411. [Google Scholar] [CrossRef]
- Asim, S.; Javed, M.S.; Hussain, S.; Ran, M.; Iram, F.; Lv, D.D.; Hashim, M.; Jawaria, R.; Saleem, M.; Gul, N.; et al. RuO2 Nanorods Decorated CNTs Grown Carbon Cloth as a Free Standing Electrode for Supercapacitor and Lithium Ion Batteries. Electrochimica Acta 2019, 326, 135009. [Google Scholar]
- Zhu, D.H.; Zhou, Q.J.; Liang, A.Q.; Zhou, W.Q.; Chang, Y.N.; Li, D.Q.; Wu, J.; Ye, G.; Xu, J.K.; Ren, Y. Two-step Preparation of Carbon Nanotubes/RuO2/polyindole Ternary Nanocomposites and Their Application as High-performance Supercapacitors. Front. Mater. Sci. 2020, 14, 109–119. [Google Scholar]
- Zhang, P.; Liu, X.F.; He, H.W.; Peng, Y.J.; Wu, Y.H. Engineering RuO2 on CuCo2O4/CuO Nanoneedles as Multifunctional Electrodes for the Hybrid Supercapacitors and Water Oxidation Catalysis. J. Alloys Compd. 2020, 832, 154962. [Google Scholar] [CrossRef]
- Liu, S.Y.; Wang, R.C.; Ma, C.X.; Yang, D.H.; Li, D.X.; Lewandowski, Z. Improvement of Electrochemical Performance via Enhanced Reactive Oxygen Species Adsorption at ZnO–NiO@rGO Carbon Felt Cathodes in Photosynthetic Algal Microbial Fuel Cells. Chem. Eng. J. 2020, 391, 123627. [Google Scholar]
- Wu, Z.S.; Wang, D.W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H.M. Anchoring Hydrous RuO2 on Graphene Sheets for High-performance Electrochemical Capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602. [Google Scholar]
- Jeon, S.; Jeong, J.H.; Yoo, H.; Yu, H.K.; Kim, B.H.; Kim, M.H. RuO2 Nanorods on Electrospun Carbon Nanofibers for Supercapacitors. ACS Appl. Nano Mater. 2020, 3, 3847–3858. [Google Scholar]
- Kim, Y.T.; Tadai, K.; Mitani, T. Highly Dispersed Ruthenium Oxide Nanoparticles on Carboxylated Carbon Nanotubes for Supercapacitor Electrode Materials. J. Mater. Chem. 2005, 15, 4914–4921. [Google Scholar]
- Parker, S.F.; Robertson, S.J.; Imberti, S. Structure and Spectroscopy of the Supercapacitor Material Hydrous Ruthenium Oxide, RuO2·xH2o, by Neutron Scattering. Mol. Phys. 2019, 117, 3417–3423. [Google Scholar] [CrossRef]
- Hu, C.C.; Chen, W.C.; Chang, K.H. How to Achieve Maximum Utilization of Hydrous Ruthenium Oxide for Supercapacitors. J. Electrochem. Soc. 2004, 151, A281–A290. [Google Scholar]
- Yang, L.; Zhang, J.M.; Zhang, Y.S.; Zhao, Y.L.; Yin, H.; Hua, Q.S.; Yuan, J.S.; Tang, J. A Ternary Composite RuO2@SWCNT/graphene for High Performance Electrochemical Capacitors. Mater. Lett. 2020, 259, 126860. [Google Scholar]
- Ji, S.-H.; Chodankar, N.R.; Kim, D.-H. Aqueous Asymmetric Supercapacitor Based on RuO2-WO3 Electrodes. Electrochim. Acta 2019, 325, 134879. [Google Scholar]
- Jiang, Q.; Kurra, N.; Alhabeb, M.; Gogotsi, Y.; Alshareef, H.N. All Pseudocapacitive MXene-RuO2 Asymmetric Supercapacitors. Adv. Energy Mater. 2018, 8, 1703043. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, J.; Qian, L.H.; Lv, X.L.; Yuan, S.L.; Wang, S.; Lei, P.X. Hierarchically Porous Co3O4/C Nanowire Arrays Derived from a Metal–organic Framework for High Performance Supercapacitors and the Oxygen Evolution Reaction. J. Mater. Chem. A 2016, 4, 16516–16523. [Google Scholar] [CrossRef]
- Adhikari, S.; Selvaraj, S.; Ji, S.H.; Kim, D.H. Encapsulation of Co3O4 Nanocone Arrays via Ultrathin NiO for Superior Performance Asymmetric Supercapacitors. Small 2020, 16, 2005414. [Google Scholar] [CrossRef]
- Wang, X.L.; Fu, J.W.; Wang, Q.F.; Dong, Z.J.; Wang, X.L.; Hu, A.Y.; Wang, W.; Yang, S.B. Preparation and Electrochemical Properties of Co3O4 Supercapacitor Electrode Materials. Crystals 2020, 10, 720. [Google Scholar]
- Liao, Q.Y.; Li, N.; Jin, S.X.; Yang, G.W.; Wang, C.X. All-solid-state Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. ACS Nano 2015, 9, 5310–5317. [Google Scholar]
- Wang, X.M.; Yin, S.M.; Jiang, J.; Xiao, H.P.; Li, X.H. A Tightly Packed Co3O4/C&S Composite for High-performance Electrochemical Supercapacitors from a Cobalt (III) Cluster-based Coordination Precursor. J. Solid State Chem. 2020, 288, 121435. [Google Scholar]
- Lu, J.L.; Li, J.E.; Wan, J.; Han, X.Y.; Ji, P.Y.; Luo, S.; Gu, M.X.; Wei, D.P.; Hu, C.G. A Facile Strategy of In-situ Anchoring of Co3O4 on N Doped Carbon Cloth for an Ultrahigh Electrochemical Performance. Nano Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Chatterjee, M.; Sain, S.; Roy, A.; Das, S.; Pradhan, S.W. Enhanced Electrochemical Properties of Co3O4 with Morphological Hierarchy for Energy Storage Application: A Comparative Study with Different Electrolytes. J. Phys. Chem. Solids 2021, 148, 109733. [Google Scholar] [CrossRef]
- Cao, J.M.; Li, J.Z.; Zhou, L.; Xi, Y.L.; Cao, X.; Zhang, Y.M.; Han, W. Tunable Agglomeration of Co3O4 Nanowires as the Growing Core for In-situ Formation of Co2NiO4 Assembled with Polyaniline-derived Carbonaceous Fibers as the High-performance Asymmetric Supercapacitors. J. Alloys Compd. 2021, 853, 157210. [Google Scholar]
- Deng, J.C.; Kang, L.T.; Bai, G.L.; Li, Y.; Li, P.Y.; Liu, X.G.; Yang, Y.Z.; Gao, F.; Liang, W. Solution Combustion Synthesis of Cobalt Oxides (Co3O4 and Co3O4/CoO) Nanoparticles as Supercapacitor Electrode Materials. Electrochim. Acta 2014, 132, 127–135. [Google Scholar]
- Xiang, C.C.; Li, M.; Zhi, M.J.; Manivannan, A.; Wu, N.Q. A reduced Graphene Oxide/Co3O4 Composite for Supercapacitor Electrode. J. Power Sources 2013, 226, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Youssry, S.M.; Soe, H.M.; Abdel-Galeil, M.M.; Kawamura, G.; Matsuda, A. Honeycomb-like Open-edged Reduced-graphene-oxide-enclosed Transition Metal Oxides (NiO/Co3O4) as Improved Electrode Materials for High-performance Supercapacitor. J. Energy Storage 2020, 30, 101539. [Google Scholar] [CrossRef]
- Ji, Z.Y.; Liu, K.; Li, N.; Zhang, H.Y.; Dai, W.Y.; Shen, X.P.; Zhu, G.X.; Kong, L.R.; Yuan, A.H. Nitrogen-doped Carbon Dots Anchored NiO/Co3O4 Ultrathin Nanosheets as Advanced Cathodes for Hybrid Supercapacitors. J. Colloid Interface Sci. 2020, 579, 282–289. [Google Scholar]
- Yue, X.-M.; Liu, Z.-J.; Xiao, C.-C.; Ye, M.; Peng, C.; Gu, Z.-Y.; Zhu, J.-S.; Zhang, S.-Q. Synthesis of Co3O4/reduced Graphene Oxide by One Step-hydrothermal and Calcination Method for High-performance Supercapacitors. Ionics 2021, 27, 339–349. [Google Scholar]
- Zhao, Y.; Liu, H.Q.; Hu, P.F.; Song, J.R.; Xiao, L. Asymmetric Hybrid Capacitor Based on Co3O4 Nanowire Electrode. Ionics 2020, 26, 6289–6295. [Google Scholar]
- Priyadharsini, C.I.; Marimuthu, G.; Pazhanivel, T.; Anbarasan, P.M.; Aroulmoji, V.; Mohana, L. Sol–Gel Synthesis of Co3O4 Nanoparticles as an Electrode Material for Supercapacitor Applications. J. Sol. Gel Sci. Technol. 2020, 96, 416–422. [Google Scholar] [CrossRef]
- Guan, C.; Liu, X.M.; Ren, W.N.; Li, X.; Cheng, C.W.; Wang, J. Rational Design of Metal-organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis. Adv. Energy Mater. 2017, 7, 1602391. [Google Scholar]
- Aadil, M.; Zulfiqar, S.; Shahid, M.; Haider, S.; Shakir, I.; Warsi, M.F. Binder Free Mesoporous Ag-doped Co3O4 Nanosheets with Outstanding Cyclic Stability and Rate Capability for Advanced Supercapacitor Applications. J. Alloys Compd. 2020, 844, 156062. [Google Scholar] [CrossRef]
- Yang, X.Y.; Xiang, C.L.; Zou, Y.J.; Liang, J.; Zhang, H.Z.; Yan, E.H.; Xu, F.; Hu, X.B.; Cheng, Q.; Sun, L.X. Low-temperature Synthesis of Sea Urchin-like Co-Ni Oxide on Graphene Oxide for Supercapacitor Electrodes. J. Mater. Sci. Technol. 2020, 55, 223–230. [Google Scholar]
- Wang, Z.W.; Zhao, K.M.; Lu, S.X.; Xu, W.G. Application of Flammulina-velutipes-like CeO2/Co3O4/rGO in High-performance Asymmetric Supercapacitors. Electrochim. Acta 2020, 353, 136599. [Google Scholar]
- Wei, G.; Yan, L.Q.; Huang, H.F.; Yan, F.X.; Liang, X.Q.; Xu, S.K.; Lan, Z.Q.; Zhou, W.Z.; Guo, J. The Hetero-structured Nanoarray Construction of Co3O4 Nanowires Anchored on Nanoflakes as a High-performance Electrode for Supercapacitors. Appl. Surf. Sci. 2021, 538, 147932. [Google Scholar]
- Cheng, L.; Zhang, Q.S.; Xu, M.; Zhai, Q.C.; Zhang, C.L. Two-for-one Strategy: Three-dimensional Porous Fe-doped Co3O4 Cathode and N-doped Carbon Anode Derived from a Single Bimetallic Metal-organic Framework for Enhanced Hybrid Supercapacitor. J. Colloid Interface Sci. 2021, 583, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.J.; An, J.N.; Dai, H.B.; Chen, R.Y.; Yu, C.Y.; Chen, Q.; Zhou, J.Y.; Sun, G.Z.; Huang, W. Hierarchically Tubular Architectures Composed of Vertical Carbon Nanosheets Embedded with Oxygen-vacancy Enriched Hollow Co3O4 Nanoparticles for Improved Energy Storage. Electrochim. Acta 2020, 356, 136843. [Google Scholar]
- Saraf, M.; Rajak, R.; Mobin, S.M. MOF Derived High Surface Area Enabled Porous Co3O4 Nanoparticles for Supercapacitors. ChemistrySelect 2019, 4, 8142–8149. [Google Scholar] [CrossRef]
- Bao, Y.X.; Deng, Y.; Wang, M.Z.; Xiao, Z.Y.; Wang, M.H.; Fu, Y.L.; Guo, Z.Y.; Yang, Y.; Wang, L. A Controllable Top-down Etching and In-situ Xxidizing Strategy: Metal-organic Frameworks Derived α-Co/Ni(OH)2@Co3O4 Hollow Nanocages for Enhanced Supercapacitor Performance. Appl. Surf. Sci. 2020, 504, 144395. [Google Scholar]
- Wei, G.J.; Zhou, Z.; Zhao, X.X.; Zhang, W.Q.; An, C.H. Ultrathin Metal–organic Framework Nanosheet-derived Ultrathin Co3O4 Nanomeshes with Robust Oxygen-evolving Performance and Asymmetric Supercapacitors. ACS Appl. Mater. Interf. 2018, 10, 23721–23730. [Google Scholar]
- Dai, S.M.; Han, F.F.; Tang, J.; Tang, W.H. MOF-derived Co3O4 Nanosheets Rich in Oxygen Vacancies for Efficient All-solid-state Symmetric Supercapacitors. Electrochim. Acta 2019, 328, 135103. [Google Scholar]
- Li, S.M.; Yang, K.; Ya, P.; Ma, K.R.; Zhang, Z.; Huang, Q. Three-dimensional Porous Carbon/Co3O4 Composites Derived from Graphene/Co-MOF for High Performance Supercapacitor Electrodes. Appl. Surf. Sci. 2020, 503, 144090. [Google Scholar]
- Zhang, L.J.; Zhang, Y.Y.; Huang, S.L.; Yuan, Y.L.; Li, H.; Jin, Z.Y.; Wu, J.H.; Liao, Q.F.; Hu, L.; Lu, J.G.; et al. Co3O4/Ni-based MOFs on Carbon Cloth for Flexible Alkaline Battery-supercapacitor Hybrid Devices and Near-infrared Photocatalytic Hydrogen Evolution. Electrochim. Acta 2018, 281, 189–197. [Google Scholar] [CrossRef]
- Han, D.D.; Wei, J.H.; Zhao, Y.; Shen, Y.; Pan, Y.F.; Wei, F.; Mao, L.C. Metal–organic Framework Derived Petal-like Co3O4@CoNi2S4 Hybrid on Carbon Cloth with Enhanced Performance for Supercapacitors. Inorg. Chem. Front. 2020, 7, 1428–1436. [Google Scholar]
- Huang, Y.Y.; Bao, S.; Lu, J.L. Flower-like MnO2/polyaniline/hollow Mesoporous Silica as Electrode for High-performance All-solid-state Supercapacitors. J. Alloys Compd. 2020, 845, 156192. [Google Scholar] [CrossRef]
- Noh, J.; Yoon, C.M.; Kim, Y.K.; Jang, J. High Performance Asymmetric Supercapacitor Twisted from Carbon Fiber/MnO2 and Carbon Fiber/MoO3. Carbon 2017, 116, 470–478. [Google Scholar]
- Raut, S.D.; Mane, H.R.; Shinde, N.M.; Lee, D.; Shaikh, S.F.; Kim, K.H.; Kim, H.-J.; Al-Enizi, A.M.; Mane, R.S. Electrochemically Grown MnO2 Nanowires for Supercapacitor and Electrocatalysis Applications. New J. Chem. 2020, 44, 17864–17870. [Google Scholar]
- Lu, W.; Li, Y.; Yang, M.; Jiang, X.; Zhang, Y.X.; Xing, Y. Construction of Hierarchical Mn2O3@MnO2 Core–Shell Nanofibers for Enhanced Performance Supercapacitor Electrodes. ACS Appl. Energy Mater. 2020, 3, 8190–8197. [Google Scholar]
- Rani, J.R.; Thangavel, R.; Kim, M.; Lee, Y.S.; Jang, J.H. Ultra-High Energy Density Hybrid Supercapacitors Using MnO2/Reduced Graphene Oxide Hybrid Nanoscrolls. Nanomaterials 2020, 10, 2049. [Google Scholar]
- Liu, P.B.; Zhu, Y.D.; Gao, X.G.; Huang, Y.; Wang, Y.; Qin, S.Y.; Zhang, Y.Q. Rational Construction of Bowl-like MnO2 Nanosheets with Excellent Electrochemical Performance for Supercapacitor Electrodes. Chem. Eng. J. 2018, 350, 79–88. [Google Scholar]
- Wang, Q.F.; Ma, Y.; Liang, X.; Zhang, D.H.; Miao, M.H. Flexible Supercapacitors Based on Carbon Nanotube-MnO2 Nanocomposite Film Electrode. Chem. Eng. J. 2019, 371, 145–153. [Google Scholar]
- Wu, K.Q.; Ye, Z.G.; Ding, Y.; Zhu, Z.X.; Peng, X.Y.; Li, D.S.; Ma, G. Facile Co-deposition of the Carbon@MnO2 Heterostructure for High-performance Flexible Supercapacitors. J. Power Sources 2020, 477, 229031. [Google Scholar]
- Zhao, Y.F.; Ran, W.; He, J.; Huang, Y.Z.; Liu, Z.F.; Liu, W.; Tang, Y.F.; Zhang, L.; Gao, D.W.; Gao, F.M. High-performance Asymmetric Supercapacitors Based on Multilayer MnO2/graphene Oxide Nanoflakes and Hierarchical Porous Carbon with Enhanced Cycling Stability. Small 2015, 11, 1310–1319. [Google Scholar]
- Wang, L.; Ouyang, Y.; Jiao, X.Y.; Xia, X.F.; Lei, W.; Hao, Q.L. Polyaniline-assisted Growth of MnO2 Ultrathin Nanosheets on Graphene and Porous Graphene for Asymmetric Supercapacitor with Enhanced Energy Density. Chem. Eng. J. 2018, 334, 1–9. [Google Scholar]
- Bose, N.; Sundararajan, V.; Prasankumar, T.; Jose, S.P. α–MnO2 Coated Anion Intercalated Carbon Nanowires: A High Rate Capability Electrode Material for Supercapacitors. Mater. Lett. 2020, 278, 128457. [Google Scholar]
- Sui, Z.Y.; Chang, Z.S.; Xu, X.F.; Li, Y.L.; Zhu, X.M.; Zhao, C.; Chen, Q. Direct Growth of MnO2 on Highly Porous Nitrogen-doped Carbon Nanowires for Asymmetric Supercapacitors. Diam. Relat. Mater. 2020, 108, 107988. [Google Scholar]
- Cakici, M.; Reddy, K.R.; Alonso-Marroquin, F. Advanced Electrochemical Energy Storage Supercapacitors Based on the Flexible Carbon Fiber Fabric-coated with Uniform Coral-like MnO2 Structured Electrodes. Chem. Eng. J. 2017, 309, 151–158. [Google Scholar] [CrossRef]
- Zhao, P.; Yao, M.Q.; Ren, H.B.; Wang, N.; Komarneni, S. Nanocomposites of Hierarchical Ultrathin MnO2 Nanosheets/hollow Carbon Nanofibers for High-performance Asymmetric Supercapacitors. Appl. Surf. Sci. 2019, 463, 931–938. [Google Scholar]
- Cai, W.R.; Kankala, R.K.; Xiao, M.T.; Zhang, N.; Zhang, X.Q. Three-dimensional Hollow N-doped ZIF-8-derived Carbon@MnO2 Composites for Supercapacitors. Appl. Surf. Sci. 2020, 528, 146921. [Google Scholar]
- Long, X.; Tian, L.; Zhang, L.; Wang, J.; Chen, Y.; Emin, A.; Wang, X.; Xie, W.L.; Liu, D.Q.; Fu, Y.J.; et al. Interconnected δ-MnO2 Nanosheets Anchored on Activated Carbon Cloth as Flexible Electrode for High-performance Aqueous Asymmetric Supercapacitors. J. Electroanal. Chem. 2020, 877, 114656. [Google Scholar]
- Lei, R.; Gao, J.H.; Qi, L.F.; Ye, L.L.; Wang, C.; Le, Y.; Huang, Y.; Shi, X.G.; Ni, H.W. Construction of MnO2 Nanosheets@graphenated Carbon Nanotube Networks Core-shell Heterostructure on 316L Stainless Steel as Binder-free Supercapacitor Electrodes. Int. J. Hydrogen Energy 2020, 45, 28930–28939. [Google Scholar]
- Bai, X.L.; Gao, Y.L.; Gao, Z.Y.; Ma, J.Y.; Tong, X.L.; Sun, H.B.; Wang, J.A. Supercapacitor Performance of 3D-graphene/MnO2 Foam Synthesized via the Combination of Chemical Vapor Deposition with Hydrothermal Method. Appl. Phys. Lett. 2020, 117, 183901. [Google Scholar]
- Xiong, C.Y.; Yang, Q.; Dang, W.H.; Li, M.R.; Li, B.B.; Su, J.; Liu, Y.; Zhao, W.; Duan, C.; Dai, L.; et al. Fabrication of Eco-friendly Carbon Microtubes@nitrogen-doped Reduced Graphene Oxide Hybrid as an Excellent Carbonaceous Scaffold to Load MnO2 Nanowall (PANI nanorod) as Bifunctional Material for High-performance Supercapacitor and Oxygen Reduction Reaction Catalyst. J. Power Sources 2020, 447, 227387. [Google Scholar]
- Li, M.L.; Yu, J.; Wang, X.D.; Yang, Z.L. 3D Porous MnO2@carbon Nanosheet Synthesized from Rambutan Peel for High-performing Supercapacitor Electrodes Materials. Appl. Surf. Sci. 2020, 530, 147230. [Google Scholar]
- Huang, R.; Zhou, R.H.; Wang, L.; Zhu, Y.M. Dandelion-like CoO/Co3O4/Carbon Composites as Anode Materials for a High-Performance Lithium Ion Battery. ChemistrySelect 2020, 5, 12932–12939. [Google Scholar] [CrossRef]
- Shen, H.J.; Kong, X.D.; Zhang, P.; Song, X.L.; Wang, H.; Zhang, Y. In-situ Hydrothermal Synthesis of δ-MnO2/soybean Pod Carbon and Its High Performance Application on Supercapacitor. J. Alloys Compd. 2021, 853, 157357. [Google Scholar]
- Du, W.; Wang, X.N.; Zhan, J.; Sun, X.Q.; Kang, L.T.; Jiang, F.Y.; Zhang, X.Y.; Shao, Q.; Dong, M.Y.; Liu, H.; et al. Biological Cell Template Synthesis of Nitrogen-doped Porous Hollow Carbon Spheres/MnO2 Composites for High-performance Asymmetric Supercapacitors. Electrochim. Acta 2019, 296, 907–915. [Google Scholar]
- Nie, G.D.; Luan, Y.X.; Kou, Z.K.; Jiang, J.M.; Zhang, Z.Y.; Yang, N.; Wang, J.; Long, Y.-Z. Fiber-in-tube and Particle-in-tube Hierarchical Nanostructures Enable High Energy Density of MnO2-based Asymmetric Supercapacitors. J. Colloid Interface Sci. 2021, 582, 543–551. [Google Scholar]
- Yi, T.F.; Mei, J.; Guan, B.L.; Cui, P.; Luo, S.H.; Xie, Y.; Liu, Y.G. Construction of Spherical NiO@MnO2 with Core-shell Structure Obtained by Depositing MnO2 Nanoparticles on NiO Nanosheets for High-performance Supercapacitor. Ceram. Int. 2020, 46, 421–429. [Google Scholar]
- Liu, G.; Ma, L.; Liu, Q.M. The Preparation of Co3O4@MnO2 Hierarchical Nano-sheets for High-output Potential Supercapacitors. Electrochim. Acta 2020, 364, 137265. [Google Scholar]
- Zhao, Y.; He, J.F.; Dai, M.Z.; Zhao, D.P.; Wu, X.; Liu, B.D. Emerging CoMn-LDH@MnO2 Electrode Materials Assembled Using Nanosheets for Flexible and Foldable Energy Storage Devices. J. Energy Chem. 2020, 45, 67–73. [Google Scholar]
- Chen, X.Y.; Wang, X.Z.; Liu, F.J.; Song, X.J.; Cui, H.Z. Fabrication of NiO–ZnO-modified g-C3N4 Hierarchical Composites for High-performance Supercapacitors. Vacuum 2020, 178, 109453. [Google Scholar]
- Murali, S.; Dammala, P.K.; Rani, B.; Santhosh, R.; Jadhao, C.; Sahu, N.K. Polyol Mediated Synthesis of Anisotropic ZnO Nanomaterials and Composite with rGO: Application towards Hybrid Supercapacitor. J. Alloys Compd. 2020, 844, 156149. [Google Scholar] [CrossRef]
- Ouyang, Y.; Xia, X.F.; Ye, H.T.; Wang, L.; Jiao, X.Y.; Lei, W.; Hao, Q.L. Three-dimensional Hierarchical Structure ZnO@C@NiO on Carbon Cloth for Asymmetric Supercapacitor with Enhanced Cycle Stability. ACS Appl. Mater. Interfaces 2018, 10, 3549–3561. [Google Scholar] [CrossRef]
- Angelin, M.D.; Rajkumar, S.; Merlin, J.P.; Xavier, A.R.; Franklin, M.; Ravichandran, A.T. Electrochemical Investigation of Zr-doped ZnO Nanostructured Electrode Material for High-performance Supercapacitor. Ionics 2020, 26, 5757–5772. [Google Scholar] [CrossRef]
- Naeem, F.; Naeem, S.; Zhao, Z.; Shu, G.Q.; Zhang, J.; Mei, Y.F.; Huang, G.S. Atomic Layer Deposition Synthesized ZnO Nanomembranes: A Facile Route towards Stable Supercapacitor Electrode for High Capacitance. J. Power Sources 2020, 451, 227740. [Google Scholar] [CrossRef]
- Miah, M.; Mondal, T.K.; Ghosh, A.; Saha, S.K. Study of Highly Porous ZnO Nanospheres Embedded Reduced Graphene Oxide for High Performance Supercapacitor Application. Electrochim. Acta 2020, 354, 136675. [Google Scholar]
- Liu, J.; Xu, T.; Sun, X.W.; Bai, J.; Li, C.P. Preparation of Stable Composite Porous Nanofibers Carried SnOx-ZnO as a Flexible Supercapacitor Material with Excellent Electrochemical and Cycling Performance. J. Alloys Compd. 2019, 807, 151652. [Google Scholar]
- Kumar, R.; Youssry, S.M.; Abdel-Galeil, M.M.; Matsuda, A. One-pot Synthesis of Reduced Graphene Oxide Nanosheets Anchored ZnO Nanoparticles via Microwave Approach for Electrochemical Performance as Supercapacitor Electrode. J. Mater. Sci.-Mater. Electron. 2020, 31, 15456–15465. [Google Scholar] [CrossRef]
- Chaudhary, S.; James, L.S.; Kumar, A.B.V.K.; Ramana, C.V.V.; Mishra, D.K.; Thomas, S.; Kim, D. Reduced Graphene Oxide/ZnO Nanorods Nanocomposite: Structural, Electrical and Electrochemical Properties. J. Inorg. Organomet. Polym. Mater. 2019, 29, 2282–2290. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, S.S.; Cao, J.Y.; Naguib, H.E. Zinc Oxide/carbon Nanotube Nanocomposite for High-performance Flexible Supercapacitor with Sensing Ability. Electrochim. Acta 2020, 350, 136353. [Google Scholar]
- Arunpandiyan, S.; Bharathi, S.; Pandikumar, A.; Arasi, S.E.; Arivarasan, A. Structural Analysis and Redox Additive Electrolyte Based Supercapacitor Performance of ZnO/CeO2 Nanocomposite. Mat. Sci. Semicon. Proc. 2020, 106, 104765. [Google Scholar] [CrossRef]
- Shaheen, I.; Ahmad, K.S.; Zequine, C.; Gupta, R.K.; Thomas, A.G.; Malik, M.A. Green Synthesis of ZnO-Co3O4 Nanocomposite Using Facile Foliar Fuel and Investigation of Its Electrochemical Behaviour for Supercapacitors. New J. Chem. 2020, 44, 18281–18292. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Fu, W.B.; Muhammad, M.; Xie, M.Z.; Xie, E.Q.; Han, W.H. Self-assembled Microspheres Composed of Porous ZnO/CoO Nanosheets for Aqueous Hybrid Supercapacitors. J. Phys. D Appl. Phys. 2019, 52, 505501. [Google Scholar]
- Chakraborty, S.; Raj, M.A.; Mary, N.L. Biocompatible Supercapacitor Electrodes Using Green Synthesised ZnO/Polymer Nanocomposites for Efficient Energy Storage Applications. J. Energy Storage 2020, 28, 101275. [Google Scholar] [CrossRef]
- Simon, R.; Chakraborty, S.; Konikkara, N.; Mary, N.L. Functionalized Polystyrene Maleic Anhydride Copolymer/ZnO Nanocomposites for Enhanced Electrochemical Performance. J. Appl. Polym. Sci. 2020, 137, 48945. [Google Scholar] [CrossRef]
- He, X.J.; Li, X.J.; Ma, H.; Han, J.F.; Zhang, H.; Yu, C.; Xiao, N.; Qiu, J.S. ZnO Template Strategy for the Synthesis of 3D Interconnected Graphene Nanocapsules from Coal Tar Pitch as Supercapacitor Electrode Materials. J. Power Sources 2017, 340, 183–191. [Google Scholar]
- Chebrolu, V.T.; Balakrishnan, B.; Cho, I.; Bak, J.S.; Kim, H.J. A Unique Core-shell Structured ZnO/NiO Heterojunction to Improve the Performance of Supercapacitors Produced Using a Chemical Bath Deposition Approach. Dalton Trans. 2020, 49, 14432–14444. [Google Scholar] [CrossRef]
- Di, S.; Gong, L.G.; Zhou, B.B. Precipitated Synthesis of Al2O3-ZnO Nanorod for High-Performance Symmetrical Supercapacitors. Mater. Chemi. Phys. 2020, 253, 123289. [Google Scholar]
- Liu, X.J.; Liu, H.; Sun, X.Z. Aligned ZnO nanorod@Ni–Co Layered Double Hydroxide Composite Nanosheet Arrays with a Core–shell Structure as High-performance Supercapacitor Electrode Materials. CrystEngComm 2020, 22, 1593–1601. [Google Scholar]
- Obodo, R.M.; Nwanya, A.C.; Arshad, M.; Iroegbu, C.; Ahmad, I.; Osuji, R.U.; Maaza, M.; Ezema, F.I. Conjugated NiO-ZnO/GO Nanocomposite Powder for Applications in Supercapacitor Electrodes Material. Int. J. Energy Res. 2020, 44, 3192–3202. [Google Scholar] [CrossRef]
- Asgar, H.; Deen, K.M.; Haider, W. Estimation of Electrochemical Charge Storage Capability of ZnO/CuO/reduced Graphene Oxide Nanocomposites. Int. J. Energy Res. 2020, 44, 1580–1593. [Google Scholar] [CrossRef]
- Obodo, R.M.; Asjad, M.; Nwanya, A.C.; Ahmad, I.; Zhao, T.K.; Ekwealor, A.B.C.; Ejikeme, P.M.; Maaza, M.; Ezema, F.I. Evaluation of 8.0 MeV Carbon (C2+) Irradiation Effects on Hydrothermally Synthesized Co3O4-CuO-ZnO@GO Electrodes for Supercapacitor Applications. Electroanaly 2020, 32, 2958–2968. [Google Scholar] [CrossRef]
- Yao, D.; Wang, F.L.; Lei, W.; Hua, Y.; Xia, X.F.; Liu, J.P.; Hao, Q.L. Oxygen Vacancies Boosting Ultra-stability of Mesoporous ZnO-CoO@N-doped Carbon Microspheres for Asymmetric Supercapacitors. Sci. China Mater. 2020, 63, 2013–2027. [Google Scholar]
- Chen, H.C.; Lyu, Y.R.; Fang, A.; Lee, G.J.; Karuppasamy, L.; Wu, J.J.; Lin, C.K.; Ananda, S.; Chen, C.Y. The Design of ZnO Nanorod Arrays Coated with MnOx for High Electrochemical Stability of a Pseudocapacitor Electrode. Nanomaterials 2020, 10, 475. [Google Scholar]
- Sun, L.; Zhang, Y.X.; Si, H.C.; Shi, Y.; Sun, C.; Zhang, Y.H. Porous Mo-C Coverage on ZnO Rods for Enhanced Supercapacitive Performance. Dalton Trans. 2020, 49, 5134–5142. [Google Scholar]
- Mohamed, I.M.A.; Yasin, A.S.; Liu, C.K. Synthesis, Surface Characterization and Electrochemical Performance of Zno@activated Carbon as a Supercapacitor Electrode Material in Acidic and Alkaline Electrolytes. Ceram. Int. 2020, 46, 3912–3920. [Google Scholar] [CrossRef]
- He, D.; Wan, J.N.; Liu, G.L.; Suo, H.; Zhao, C. Design and Construction of Hierarchical α-Co(OH)2-coated Ultra-thin ZnO Flower Nanostructures on Nickel Foam for High Performance Supercapacitors. J. Alloys Compd. 2020, 838, 155556. [Google Scholar]
- Ding, S.X.; Li, X.Y.; Jiang, X.L.; Hu, Q.; Yan, Y.Q.; Zheng, Q.J. Core-shell Nanostructured ZnO@CoS Arrays as Advanced Electrode Materials for High-performance Supercapacitors. Electrochim. Acta 2020, 354, 136711. [Google Scholar]
- Li, Z.L.; Sui, Y.W.; Qi, J.Q.; Wei, F.X.; He, Y.Z.; Meng, Q.K.; Ren, Y.J.; Zhang, X.P.; Zhan, Z.Z.; Sun, Z. 3D Core-shell Pistil-like MnCo2O4.5/polyaniline Nanocomposites as High Performance Supercapacitor Electrodes. Compos. Interface 2020, 27, 631–644. [Google Scholar]
- Wang, H.Z.; Shen, C.; Liu, J.; Zhang, W.G.; Yao, S.W. Three-dimensional MnCo2O4/graphene Composites for Supercapacitor with Promising Electrochemical Properties. J. Alloys Compd. 2019, 792, 122–129. [Google Scholar]
- Shanmugavadivel, M.; Dhayabaran, V.V.; Subramanian, M. Fabrication of High Energy and High Power Density Supercapacitor Based on MnCo2O4 Nanomaterial. J. Phys. Chem. Solids 2019, 133, 15–20. [Google Scholar] [CrossRef]
- Maile, N.C.; Shinde, S.K.; Patil, R.T.; Fulari, A.V.; Kolim, R.R.; Kim, D.-Y.; Lee, D.S.; Fulari, V.J. Structural and Morphological Changes in Binder-free MnCo2O4 Electrodes for Supercapacitor Applications: Effect of Deposition Parameters. J. Mater. Sci. Mater. Electron. 2019, 30, 3729–3743. [Google Scholar] [CrossRef]
- Wang, N.; Sun, B.L.; Zhao, P.; Yao, M.Q.; Hu, W.C.; Komarneni, S. Electrodeposition Preparation of NiCo2O4 Mesoporous Film on Ultrafine Nickel Wire for Flexible Asymmetric Supercapacitors. Chem. Eng. J. 2018, 345, 31–38. [Google Scholar]
- Wang, X.; Xu, L.; Song, K.; Yane, R.; Jia, L.H.; Guo, X.F.; Jing, X.Y.; Wang, J. Synthesis of MnCo2O4@MnCo2S4 Core/shell Micro-nanostructures on Ni Foam for High Performance Asymmetric Supercapacitors. Colloid Surf. A 2019, 570, 73–80. [Google Scholar]
- Xu, K.B.; Li, W.Y.; Liu, Q.; Li, B.; Liu, X.J.; An, L.; Chen, Z.G.; Zou, R.J.; Hu, J.Q. Hierarchical Mesoporous NiCo2O4@MnO2 Core–shell Nanowire Arrays on Nickel Foam for Aqueous Asymmetric Supercapacitors. J. Mater. Chem. A 2014, 2, 4795–4802. [Google Scholar]
- Zhu, D.; Sun, X.; Yu, J.; Liu, Q.; Liu, J.Y.; Chen, R.R.; Zhang, H.S.; Li, R.M.; Yu, J.; Wang, J. Rationally Designed CuCo2O4@Ni(OH)2 with 3D Hierarchical Core-shell Structure for Flexible Energy Storage. J. Colloid Interface Sci. 2019, 557, 76–83. [Google Scholar]
- Zhao, D.P.; Dai, M.Z.; Liu, H.Q.; Xiao, L.; Wu, X.; Xia, H. Constructing High Performance Hybrid Battery and Electrocatalyst by Heterostructured NiCo2O4@NiWS Nanosheets. Cryst. Growth Des. 2019, 19, 1921–1929. [Google Scholar]
- Liu, Q.; Hong, X.D.; Zhang, X.; Wang, W.; Guo, W.X.; Liu, X.Y.; Ye, M.D. Hierarchically Structured Co9S8@NiCo2O4 Nanobrushes for High-performance Flexible Asymmetric Supercapacitors. Chem. Eng. J. 2019, 356, 985–993. [Google Scholar]
- Xu, X.W.; Liu, Y.; Dong, P.; Ajayan, P.M.; Shen, J.F.; Ye, M.X. Mesostructured CuCo2S4/CuCo2O4 Nanoflowers as Advanced Electrodes for Asymmetric Supercapacitors. J. Power Sources 2018, 400, 96–103. [Google Scholar]
- Liu, H.Y.; Guo, Z.X.; Wang, S.B.; Xun, X.C.; Chen, D.; Lian, J.S. Reduced Core-shell Structured MnCo2O4@MnO2 Nanosheet Arrays with Oxygen Vacancies Grown on Ni Foam for Enhanced-performance Supercapacitors. J. Alloys Compd. 2020, 846, 156504. [Google Scholar]
- Feng, Y.M.; Liu, W.F.; Wang, Y.; Gao, W.N.; Li, J.T.; Liu, K.L.; Wang, X.P.; Jiang, J. Oxygen Vacancies Enhance Supercapacitive Performance of CuCo2O4 in High-energy-density Asymmetric Supercapacitors. J. Power Sources 2020, 458, 228005. [Google Scholar]
- Yan, D.; Wang, W.; Luo, X.; Chen, C.; Zeng, Y.; Zhu, Z.H. NiCo2O4 with Oxygen Vacancies as Better Performance Electrode Material for Supercapacitor. Chem. Eng. J. 2018, 334, 864–872. [Google Scholar]
- Chen, T.; Shi, R.; Zhang, Y.Y.; Wang, Z.H. A MnCo2O4@NiMoO4 Core-Shell Composite Supported on Nickel Foam as a Supercapacitor Electrode for Energy Storage. ChemPlusChem 2019, 84, 69–77. [Google Scholar]
- Gao, Y.F.; Xia, Y.C.; Wan, H.J.; Xu, X.; Jiang, S. Enhanced Cycle Performance of Hierarchical Porous Sphere MnCo2O4 for Asymmetric Supercapacitors. Electrochim. Acta 2019, 301, 294–303. [Google Scholar]
- Zhao, Y.H.; Dong, H.X.; He, X.Y.; Yu, J.; Chen, R.R.; Liu, Q.; Liu, J.Y.; Zhang, H.S.; Yu, J.; Wang, J. Carbon Cloth Modified with Metal-Organic Framework Derived CC@CoMoO4-Co(OH)2 Nanosheets Array as a Flexible Energy-Storage Material. ChemElectroChem 2019, 6, 3355–3366. [Google Scholar]
- Daneshvar, S.; Arvand, M. In-situ Growth of Hierarchical Ni-Co LDH/CoMoO4 Nanosheets Arrays on Ni Foam for Pseudocapacitors with Robust Cycle Stability. J. Alloys Compd. 2020, 815, 152421. [Google Scholar] [CrossRef]
- Liu, H.Q.; Zhao, D.P.; Liu, Y.; Hu, P.F.; Wu, X.; Xia, H. Boosting Energy Storage and Electrocatalytic Performances by Synergizing CoMoO4@MoZn22 Core-shell Structures. Chem. Eng. J. 2019, 373, 485–492. [Google Scholar]
- Chen, H.; Hu, H.M.; Han, F.; Liu, J.D.; Zhang, Y.R.; Zheng, Y.H. CoMoO4/bamboo Charcoal Hybrid Material for High-energy-density and High Cycling Stability Supercapacitors. Dalton Trans. 2020, 49, 10799–10807. [Google Scholar]
- Zhou, E.M.; Tian, L.L.; Cheng, Z.F.; Fu, C.P. Design of NiO Flakes@CoMoO4 Nanosheets Core-Shell Architecture on Ni Foam for High-Performance Supercapacitors. Nanoscale Res. Lett. 2019, 14, 211. [Google Scholar]
- Lv, Y.M.; Liu, A.F.; Che, H.W.; Mu, J.B.; Guo, Z.C.; Zhang, X.L.; Bai, Y.M.; Zhang, Z.X.; Wang, G.S.; Pei, Z.Z. Three-dimensional Interconnected MnCo2O4 nanosheets@MnMoO4 Nanosheets Core-shell Nanoarrays on Ni foam for High-performance Supercapacitors. Chem. Eng. J. 2018, 336, 64–73. [Google Scholar]
- Wan, L.; Liu, J.X.; Li, X.; Zhang, Y.; Chen, J.; Du, C.; Xie, M.J. Fabrication of Core-shell NiMoO4@MoS2 Nanorods for High-performance Asymmetric Hybrid Supercapacitors. Int. J. Hydrogen Energy 2020, 45, 4521–4533. [Google Scholar]
- Xuan, H.C.; Li, H.S.; Yang, J.; Liang, X.H.; Xie, Z.G.; Han, P.D.; Wu, Y.C. Rational Design of Hierarchical Core-shell Structured CoMoO4@CoS Composites on Reduced Graphene Oxide for Supercapacitors with Enhanced Electrochemical Performance. Int. J. Hydrogen Energy 2020, 45, 6024–6035. [Google Scholar]
- Hussain, I.; Ali, A.; Lamiel, C.; Mohamed, S.G.; Sahoo, S.; Shim, J.J. A 3D Walking Palm-like Core–shell CoMoO4@NiCo2S4@Nickel Foam Composite for High-performance Supercapacitors. Dalton Trans. 2019, 48, 3853–3861. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Fu, Q.G.; Huang, H.M.; Wei, L.; Guo, X. Silver-quantum-dot-modified MoO3 and MnO2 paper-like Freestanding Films for Flexible solid-state Asymmetric Supercapacitors. Small 2019, 15, 1805235. [Google Scholar] [CrossRef]
- Shen, T.; Yang, L.P.; Pam, M.E.; Shi, Y.M.; Yang, H.Y. Quantum Dot-carbonaceous Nanohybrid Composites: Preparation and Application in Electrochemical Energy storage. J. Mater. Chem. A 2020, 8, 22488–22506. [Google Scholar] [CrossRef]
- Manikandan, A.; Chen, Y.Z.; Shen, C.C.; Sher, C.W.; Kuo, H.C.; Chueh, Y.L. A Critical Review on Two-dimensional Quantum Dots (2D QDs): From Synthesis toward Applications in Energy and Optoelectronics. Prog. Quant. Electron. 2019, 68, 100226. [Google Scholar] [CrossRef]
- Xu, Q.; Cai, W.; Li, W.; Sreeprasad, T.S.; He, Z.Y.; Ong, W.-J.; Li, N. Two-dimensional Quantum Dots: Fundamentals, Photoluminescence Mechanism and their Energy and Environmental Applications. Mater. Today Energy 2018, 10, 222–240. [Google Scholar] [CrossRef]
- Ji, Z.Y.; Ma, D.W.; Dai, W.Y.; Liu, K.; Shen, X.P.; Zhu, G.X.; Nie, Y.J.; Pasang, D.; Yuan, A.H. Anchoring Nitrogen-doped Carbon Quantum Dots on Nickel Carbonate Hydroxide Nanosheets for Hybrid Supercapacitor Applications. J. Colloid Interface Sci. 2021, 590, 614–621. [Google Scholar] [CrossRef]
- Duan, H.Y.; Wang, T.; Wu, X.Y.; Su, Z.Y.; Zhuang, J.; Liu, S.L.; Zhu, R.M.; Chen, C.Y.; Pang, H. CeO2 Quantum Dots Doped Ni-Co Hydroxide Nanosheets for Ultrahigh Energy Density Asymmetric Supercapacitors. Chin. Chem. Lett. 2020, 31, 2330–2332. [Google Scholar] [CrossRef]
- Samuei, S.; Rezvani, Z.; Shomali, A.; Ulker, E.; Karadas, F. Preparation and Capacitance Properties of Graphene Quantum Dot/NiFe-Layered Double-Hydroxide Nanocomposite. Eur. J. Inorg. Chem. 2021, 2021, 258–266. [Google Scholar] [CrossRef]
- Zhu, Y.R.; Wu, Z.B.; Jing, M.J.; Hou, H.S.; Yang, Y.C.; Zhang, Y.; Yang, X.M.; Song, W.X.; Jia, X.N.; Ji, X.B. Porous NiCo2O4 Spheres Tuned through Carbon Quantum Dots Utilised as Advanced Materials for an Asymmetric Supercapacitor. J. Mater. Chem. A 2015, 3, 866–877. [Google Scholar]
- Zhang, M.W.; Liu, W.W.; Liang, R.L.; Tjandra, R.; Yu, A.P. Graphene Quantum Dot Induced Tunable Growth of Nanostructured MnCo2O4.5 Composites for High-performance Supercapacitors. Sustain. Energy Fuels 2019, 3, 2499–2508. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, Z.; Yu, Z.Y.; Wei, L.; Guo, X. Mesoporous NiMoO4 Microspheres Decorated by Ag Quantum Dots as Cathode Material for Asymmetric Supercapacitors: Enhanced Interfacial Conductivity and Capacitive Storage. Appl. Surf. Sci. 2020, 505, 144513. [Google Scholar] [CrossRef]
Material | Preparation Method | Electrolyte | Specific Capacitance | Cycling Stability | Reference |
---|---|---|---|---|---|
RuO2 | hydrothermal method | 1 M H2SO4 | 400 F g−1 | 84.7% (6000 cycles) | [56] |
MoS2-RuO2 | hydrothermal method | 1 M KOH | 972 F g−1 | / | [59] |
SWCNT/RuO2/PIn | oxidation polymerization of indole | 1 M H2SO4 | 1307 F g−1 | 93% (3000 cycles) | [63] |
reduced graphene oxide/Co3O4 | hydrothermal method | 2 M KOH | 472 F g−1 | 95.6% (1000 cycles) | [83] |
Co3O4 nanowires | hydrothermal method | 3 M KOH | 310.4 C g−1 | 80.3% (6000 cycles) | [87] |
CeO2/Co3O4/rGO nanoparticles | hydrothermal method | 6 M KOH | 1606.6 F g−1 | / | [92] |
porous carbon/Co3O4 | pyrolysis of precursor | 3 M KOH | 423 F g−1 | 17% decay 2000 cycles | [100] |
MnO2 nanosheets/hollow carbon nanofibers | hydrothermal method | 1 M Na2SO4 | 293.6 F g−1 | / | [104] |
N-doped carbon@MnO2 | tannic acid-assisted etching process | 1 M Na2SO4 | 247.9 F g−1 | 82.9% (2000 cycles) | [117] |
graphene/MnO2 foam | CVD | 1 M Na2SO4 | 333.4 F g−1 | 92.2% (2000 cycles) | [123] |
nitrogen-doped porous hollow carbon spheres/MnO2 | hydrothermal pre-carbonization and pyrolysis carbonization | 1 M Na2SO4 | 255 F g−1 | 89% (5000 cycles) | [125] |
Zr-doped ZnO | physio-chemical | 1 M KOH | 518 F g−1 | 94% (5000 cycles) | [133] |
ZnO nanomembranes | atomic layer deposition | 6 M KOH | 846 F g−1 | 89% (5000 cycles) | [134] |
ZnO@rGO | direct microwave irradiation | 0.1 M KOH | 102.4 F g−1 | 82.5% (3000 cycles) | [137] |
Co3O4-CuO-ZnO/GO | hydrothermal method | 0.5 M Na2SO4 | 2045 F g−1 | 83.02% (5000 cycles) | [151] |
Category | Electrode Material | Electrolyte | Specific Capacitance | Cycling Stability | Reference |
---|---|---|---|---|---|
binary transmission metal oxides | CuCo2O4/CuO@RuO2 | 2 M KOH | 862.5 mAh cm−2 | 90.1% (8000 cycles) | [64] |
NiO/Co3O4 | 3 M KOH | 1242 C g−1 | 95.5% (12,000 cycles) | [75] | |
Co3O4 micro-bundles | 2 M KOH | 282.3 C g−1 | 74.6% (4000 cycles) | [51] | |
Ag-doped Co3O4/NF | 3 M KOH | 1425 F g−1 | 96.4 (5000 cycles) | [91] | |
Co3O4@MnO2 on carbon cloth | 1 M Na2SO4 | 616.7 F g−1 | 83.1% (10,000 cycles) | [128] | |
NiO@MnO2 | / | 1219.2 F g−1 | 76.7% (10,000 cycles) | [127] | |
ZnO/CeO2 | 0.2 M K4(Fe[CN]6) in 3 M KOH | 495.4 F g−1 | 95.6% (2000 cycles) | [140] | |
ZnO@Mo–C | 2 M KOH | 900 F g−1 | / | [154] | |
ternary transmission metal oxides | graphene quantum dots/MnCo2O4.5 | 2M KOH | 1625 F g−1 | 80% (5000 cycles) | [191] |
Ag QDs/NiMoO4 | 3 M KOH | 2074 F g−1 | 81% (1000 cycles) | [192] | |
CoMoO4@NiCo2S4@Nickel Foam | 3 M KOH | 17.0 F cm−2 | 114% 10,000 cycles. | [182] | |
CuCo2O4@Ni(OH)2 | 2 M KOH | 2160 F g−1 | 92% (5000 cycles) | [165] | |
Co9S8@NiCo2O4 | 3 M KOH | 1966 F g−1 | 92.9% (5000 cycles) | [167] | |
CoMoO4@MoZn22 | 3 M KOH | 923 C g−1 | 92.3% (7000 cycles) | [177] |
Electrode Material | Operating Voltage | Specific Capacitance | Energy Density | Cycling Stability | Reference |
---|---|---|---|---|---|
RuO2//h-WO3 | 1.6 V | 47.59 F g−1 | 16.92 W h kg−1 | ~171.75% (6500 cycles) | [72] |
Co3O4//AC | 1.6 V | 310.4 C g−1 | 0.4 mW h cm−3 | 79.2% (10,000 cycles) | [87] |
Co3O4-NiO/GO//AC | 1.65 V | 133 F g−1 | 50.2 W h kg−1 | 82% (3000 cycles) | [91] |
Co3O4/NF—8 h//N-rGO/NF | 1.6 V | 62.5 F g−1 | 22.2 W h kg−1 | 93.3% (10,000 cycles) | [93] |
MnO2/HCS-30//HCS | 2.0 V | 74.5 F g−1 | 41.4 W h kg−1 | 93.9% (5000 cycles) | [125] |
Co3O4@MnO2@CC-90//AC | 2.2 V | 309.2 mF cm−2 | 54.71 W h kg−1 | 86.3% (10,000 cycles) | [128] |
graphene electrode//ZnO-CoO@NC | 1.6 V | / | 16.5 W h kg−1 | about 94% (10,000 cycles) | [152] |
ZnO@CoS//AC | 1.6 V | 2438 mC cm−2 | 45.2 W h kg−1 | 107% (11,000 cycles) | [157] |
NiCo2O4@MnO2//AC | 1.5 V | 112 F g−1 | 35 W h kg−1 | ~71% (5000 cycles) | [164] |
CuCo2S4/CuCo2O4//graphene aerogel | 1.6 V | 90.4 F g−1 | 33.2 W h kg−1 | 73% (10,000 cycles) | [168] |
CoMoO4@CoS//AC | 1.7 V | 189.5 F g−1 | 59.2 W h kg−1 | 91.5% (6000 cycles) | [181] |
CoMoO4@NiCo2S4@NF// AC@NF | 1.6 V | 182 F g−1 | 60.2 W h kg−1 | 84% (5000 cycles) | [182] |
MnCo2O4.5-40 GQDs//rGO | 1.3 V | 200 F g−1 | 46 W h kg−1 | 77% (5000 cycles) | [191] |
Ag QDs/ NiMoO4//spore-derived AC | 1.7 V | 120.5 F g−1 | 48.5 W h kg−1 | 84.4% (5000 cycles) | [192] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials 2021, 11, 1248. https://doi.org/10.3390/nano11051248
Liang R, Du Y, Xiao P, Cheng J, Yuan S, Chen Y, Yuan J, Chen J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials. 2021; 11(5):1248. https://doi.org/10.3390/nano11051248
Chicago/Turabian StyleLiang, Ruibin, Yongquan Du, Peng Xiao, Junyang Cheng, Shengjin Yuan, Yonglong Chen, Jian Yuan, and Jianwen Chen. 2021. "Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments" Nanomaterials 11, no. 5: 1248. https://doi.org/10.3390/nano11051248
APA StyleLiang, R., Du, Y., Xiao, P., Cheng, J., Yuan, S., Chen, Y., Yuan, J., & Chen, J. (2021). Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials, 11(5), 1248. https://doi.org/10.3390/nano11051248