Spin-Resolved Quantum Scars in Confined Spin-Coupled Two-Dimensional Electron Gas
Abstract
:1. Introduction
2. Theoretical Model
3. Scars
3.1. Scar Detection
3.2. Level Statistics
3.3. Scars
3.4. Local Density of States
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anderson, P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958, 109, 1492. [Google Scholar] [CrossRef]
- Segev, M.; Silberberg, Y.; Christodoulides, D.N. Anderson localization of light. Nat. Photonics 2013, 7, 197. [Google Scholar] [CrossRef]
- Hu, H.; Strybulevych, A.; Page, J.; Skipetrov, S.; Van Tiggelen, B. Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 2008, 4, 945–948. [Google Scholar] [CrossRef]
- Lagendijk, A.; van Tiggelen, B.; Wiersma, D.S. Fifty years of Anderson localization. Phys. Today 2009, 62, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Basko, D.M.; Aleiner, I.L.; Altshuler, B.L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 2006, 321, 1126. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhao, B.; Devakul, T.; Huse, D.A. Many-body localization phase transition: A simplified strong-randomness approximate renormalization group. Phys. Rev. B 2016, 93, 224201. [Google Scholar] [CrossRef] [Green Version]
- Luitz, D.J.; Laflorencie, N.; Alet, F. Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 2015, 91, 081103. [Google Scholar] [CrossRef] [Green Version]
- Luitz, D.J.; Laflorencie, N.; Alet, F. Extended slow dynamical regime close to the many-body localization transition. Phys. Rev. B 2016, 93, 060201. [Google Scholar] [CrossRef] [Green Version]
- Vasseur, R.; Friedman, A.J.; Parameswaran, S.A.; Potter, A.C. Particle-hole symmetry, many-body localization, and topological edge modes. Phys. Rev. B 2016, 93, 134207. [Google Scholar] [CrossRef] [Green Version]
- Kjäll, J.A.; Bardarson, J.H.; Pollmann, F. Many-Body Localization in a Disordered Quantum Ising Chain. Phys. Rev. Lett. 2014, 113, 107204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serbyn, M.; Moore, J.E. Spectral statistics across the many-body localization transition. Phys. Rev. B 2016, 93, 041424. [Google Scholar] [CrossRef] [Green Version]
- Bardarson, J.H. (Ed.) For an overview we refer to the topical issue. Annalen der Physik 2017, 529, 1700191. [Google Scholar] [CrossRef] [Green Version]
- Oganesyan, V.; Pal, A.; Huse, D.A. Energy transport in disordered classical spin chains. Phys. Rev. B 2009, 80, 115104. [Google Scholar] [CrossRef] [Green Version]
- Azimi, M.; Sekania, M.; Mishra, S.K.; Chotorlishvili, L.; Toklikishvili, Z.; Berakdar, J. Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain. Phys. Rev. B 2016, 94, 064423. [Google Scholar] [CrossRef] [Green Version]
- Turner, C.J.; Michailidis, A.A.; Abanin, D.A.; Serbyn, M.; Papić, Z. Weak ergodicity breaking from quantum many-body scars. Nat. Phys. 2018, 14, 745. [Google Scholar] [CrossRef] [Green Version]
- Bogomolny, E.B. Smoothed wave functions of chaotic quantum systems. Phys. D 1988, 31, 169. [Google Scholar] [CrossRef]
- Berry, M.V. Quantum scars of classical closed orbits in phase space. Proc. R. Soc. Lond. Ser. A 1989, 423, 219. [Google Scholar] [CrossRef]
- Sridhar, S. Experimental Observation of Scarred Eigenfunctions of Chaotic Microwave Cavities. Phys. Rev. Lett. 1991, 67, 785. [Google Scholar] [CrossRef]
- Stein, J.; Stöckmann, H.-J. Experimental Determination of Billiard Wave Functions. Phys. Rev. Lett. 1992, 68, 2867. [Google Scholar] [CrossRef]
- Heller, E.J. Bound-State Eigenfunctions of Classically Chaotic Hamiltonian Systems: Scars of Periodic Orbits. Phys. Rev. Lett. 1984, 53, 1515. [Google Scholar] [CrossRef]
- Li, W.; Reichl, L.E.; Wu, B. Quantum chaos in a ripple billiard. APS 2002, 65, 056220. [Google Scholar] [CrossRef]
- Prosen, T. Berry–Robnik level statistics in a smooth billiard system. J. Phys. A Math. Gen. 1998, 31, 7023. [Google Scholar] [CrossRef] [Green Version]
- Keski-Rahkonen, J.; Luukko, P.J.J.; Åberg, S.; Räsänen, E. Effects of scarring on quantum chaos in disordered quantum wells. J. Phys. Condens. Matter 2019, 31, 105301. [Google Scholar] [CrossRef] [Green Version]
- Keski-Rahkonen, J.; Ruhanen, A.; Heller, E.J.; Räsänen, E. Quantum Lissajous Scars. Phys. Rev. Lett. 2019, 123, 214101. [Google Scholar] [CrossRef] [Green Version]
- Luukko, P.J.; Drury, B.; Klales, A.; Kaplan, L.; Heller, E.J.; Räsänen, E. Strong quantum scarring by local impurities. Sci. Rep. 2016, 6, 37656. [Google Scholar] [CrossRef] [Green Version]
- Keski-Rahkonen, J.; Luukko, P.J.J.; Kaplan, L.; Heller, E.J.; Räsänen, E. Controllable quantum scars in semiconductor quantum dots. Phys. Rev. B 2017, 96, 094204. [Google Scholar] [CrossRef] [Green Version]
- Heller, E.J. The Semiclassical Way to Dynamics and Spectroscopy; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Haake, F.; Lenz, G.; Seba, P.; Stein, J.; Stöckmann, H.J.; Życzkowski, K. Manifestation of wave chaos in pseudointegrable microwave resonators. Phys. Rev. A 1991, 44, R6161. [Google Scholar] [CrossRef]
- Haake, F.; Kus, M.; Seba, P.; Stöckmann, H.J.; Stoffregen, U. Microwave billiards with broken time reversal invariance. J. Phys. A Math. Gen. 1996, 29, 5745. [Google Scholar] [CrossRef] [Green Version]
- Zozoulenko, I.V.; Berggren, K.-F. Quantum scattering, resonant states, and conductance fluctuations in an open square electron billiard. Phys. Rev. B 1997, 56, 6931. [Google Scholar] [CrossRef]
- Huang, L.; Lai, Y.-C.; Ferry, D.K.; Goodnick, S.M.; Akis, R. Relativistic Quantum Scars. Phys. Rev. Lett. 2009, 103, 054101. [Google Scholar] [CrossRef]
- Huang, L.; Lai, Y.-C.; Ferry, D.K.; Akis, R.; Goodnick, S.M. Transmission and scarring in graphene quantum dots. J. Phys. Condens. Matter 2009, 21, 344203. [Google Scholar] [CrossRef]
- Ying, L.; Huang, L.; Lai, Y.-C.; Grebogi, C. Conductance fluctuations in graphene systems: The relevance of classical ynamics. Phys. Rev. B 2012, 85, 245448. [Google Scholar] [CrossRef] [Green Version]
- Cabosart, D.; Felten, A.; Reckinger, N.; Iordanescu, A.; Toussaint, S.; Faniel, S.; Hackens, B. Recurrent quantum scars in a mesoscopic graphene ring. Nano Lett. 2017, 17, 1344. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Chen, X.; Lin, L.; Peng, H.; Liu, Z.; Huang, L.; Kang, N.; Xurt, H.Q. Transport signatures of relativistic quantum scars in a graphene cavity. Phys. Rev. B 2020, 101, 085404. [Google Scholar] [CrossRef] [Green Version]
- Oka, H.; Brovko, O.O.; Corbetta, M.; Stepanyuk, V.S.; Sander, D.; Kirschner, J. Spin-polarized quantum confinement in nanostructures: Scanning tunneling microscopy. Rev. Mod. Phys. 2014, 86, 1127. [Google Scholar] [CrossRef]
- Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 2009, 81, 1495. [Google Scholar] [CrossRef]
- Winkler, R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, V.; Roman, J.E.; Vidal, V. SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Softw. 2005, 31, 3. [Google Scholar] [CrossRef]
- Stöckmann, H. Quantum Chaos: An Introduction; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar] [CrossRef]
- Murphy, N.C.; Wortis, R.; Atkinson, W.A. Generalized inverse participation ratio as a possible measure of localization for interacting systems. Phys. Rev. B 2011, 83, 184206. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.V.; Robnik, M. Semiclassical level spacings when regular and chaotic orbits coexist. J. Phys. A Math. Gen. 1984, 17, 241. [Google Scholar] [CrossRef]
- Brody, T.A.; Flores, J.; French, J.B.; Mello, P.A.; Pandey, A.; Wong, S.S. Random-matrix physics: Spectrum and strength fluctuations. Rev. Mod. Phys. 1981, 53, 385. [Google Scholar] [CrossRef]
- Santhanam, M.S.; Bandyopadhyay, J.N.; Angom, D. Quantum spectrum as a time series: Fluctuation measures. Phys. Rev. E 2006, 73, 015201. [Google Scholar] [CrossRef] [Green Version]
- Marchukov, O.V.; Volosniev, A.G.; Fedorov, D.V.; Jensen, A.S.; Zinner, N.T. Statistical properties of spectra in harmonically trapped spin–orbit coupled systems. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 195303. [Google Scholar] [CrossRef] [Green Version]
- Berglund, N.; Kunz, H. Integrability and ergodicity of classical billiards in a magnetic field. J. Stat. Phys. 1996, 83, 81–126. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, M.; Schulz, D.; Berakdar, J. Spin-Resolved Quantum Scars in Confined Spin-Coupled Two-Dimensional Electron Gas. Nanomaterials 2021, 11, 1258. https://doi.org/10.3390/nano11051258
Berger M, Schulz D, Berakdar J. Spin-Resolved Quantum Scars in Confined Spin-Coupled Two-Dimensional Electron Gas. Nanomaterials. 2021; 11(5):1258. https://doi.org/10.3390/nano11051258
Chicago/Turabian StyleBerger, Michael, Dominik Schulz, and Jamal Berakdar. 2021. "Spin-Resolved Quantum Scars in Confined Spin-Coupled Two-Dimensional Electron Gas" Nanomaterials 11, no. 5: 1258. https://doi.org/10.3390/nano11051258
APA StyleBerger, M., Schulz, D., & Berakdar, J. (2021). Spin-Resolved Quantum Scars in Confined Spin-Coupled Two-Dimensional Electron Gas. Nanomaterials, 11(5), 1258. https://doi.org/10.3390/nano11051258