Cold Plasma Preparation of Pd/Graphene Catalyst for Reduction of p-Nitrophenol
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Palladium–Graphene Catalyst
2.2.1. Catalyst Precursor
2.2.2. Pd/Graphene Catalyst
2.3. Catalyst Characterization
2.4. Activity Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, S.; Xu, C.; Wang, G.; Cui, D. Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 2001, 54, 115–123. [Google Scholar] [CrossRef]
- Liu, T.; Cui, Z.; Liu, Y.; Bai, X. In-situ fabrication of ultrafine Pd supported on nitrogen-doped reduced graphene oxide via nitrogen glow discharge plasma for catalytic reduction of 4-Nitrophenol. Appl. Catal. A Gen. 2019, 588. [Google Scholar] [CrossRef]
- Mei, L.P.; Wang, R.; Song, P.; Feng, J.J.; Wang, Z.G.; Chen, J.R.; Wang, A.J. One-pot solvothermal synthesis of bimetallic yolk–shell Ni@PtNi nanocrystals supported on reduced graphene oxide and their excellent catalytic properties for p-nitrophenol reduction. New J. Chem. 2016, 40, 2315–2320. [Google Scholar] [CrossRef]
- Wang, A.-J.; Cheng, H.-Y.; Liang, B.; Ren, N.-Q.; Cui, D.; Lin, N.; Kim, B.H.; Rabaey, K. Efficient Reduction of Nitrobenzene to Aniline with a Biocatalyzed Cathode. Environ. Sci. Technol. 2011, 45, 10186–10193. [Google Scholar] [CrossRef] [PubMed]
- Francyelle, D.; Lucas, N.; Calado, C.; Mario, M.; Silva, M. Aqueous-phase catalytic chemical reduction of p-nitrophenol employing soluble gold nanoparticles with different shapes. Catalysts 2016, 6, 215. [Google Scholar]
- Wu, Z.; Yuan, X.; Zhong, H.; Wang, H.; Zeng, G.; Chen, X.; Wang, H.; Zhang, L.; Shao, J. Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal–organic framework/reduced graphene oxide composite. Sci. Rep. 2016, 6, 25638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abiev, R.S.; Sladkovskiy, D.A.; Semikin, K.V.; Murzin, D.Y.; Rebrov, E.V. Non-Thermal Plasma for Process and Energy Intensification in Dry Reforming of Methane. Catalysts 2020, 10, 1358. [Google Scholar] [CrossRef]
- Zhao, Y.; Aziz, M.H.; Chen, C.; Wu, T.; Wang, Q.; Ma, Y.; Huang, Q. Plasma synthesis of highly dispersed Pt nanoparticles on reduced graphene oxide-molybdenum disulfide nanosheets as efficient electrocatalysts for methanol oxidation reaction. Mater. Lett. 2020, 276, 128258. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, Z.; Wang, Y.; Dou, S.; Yan, D.; Liu, D.; Xia, Z.; Wang, S. In Situ Exfoliated, Edge-Rich, Oxygen-Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis. Adv. Mater. 2017, 29, 1606207. [Google Scholar] [CrossRef]
- Cardinali, M.; Valentini, L.; Fabbri, P.; Kenny, J.M. Radiofrequency plasma assisted exfoliation and reduction of large-area graphene oxide platelets produced by a mechanical transfer process. Chem. Phys. Lett. 2011, 508, 285–288. [Google Scholar] [CrossRef]
- Yang, C.; Gong, J.; Zeng, P.; Yang, X.; Liang, R.; Ou, Q.; Zhang, S. Fast room-temperature reduction of graphene oxide by methane/argon plasma for flexible electronics. Appl. Surf. Sci. 2018, 452, 481–486. [Google Scholar] [CrossRef]
- Di, L.; Zhang, J.; Ma, C.; Tu, X.; Zhang, X. Atmospheric-pressure dielectric barrier discharge cold plasma for synthesizing high performance Pd/C formic acid dehydrogenation catalyst. Catal. Today 2019, 337, 201–207. [Google Scholar] [CrossRef]
- Ren, L.; Yang, F.; Li, Y.; Liu, T.; Zhang, L.; Ning, G.; Liu, Z.; Gao, J.; Xu, C. Plasma synthesis of nitrogen-doped porous graphene supporting Pd nanoparticles as a new catalyst for C–C coupling reactions. RSC Adv. 2014, 4, 26804–26809. [Google Scholar] [CrossRef]
- Dameron, A.A.; Pylypenko, S.; Bult, J.B.; Neyerlin, K.; Engtrakul, C.; Bochert, C.; Leong, G.J.; Frisco, S.L.; Simpson, L.; Dinh, H.N.; et al. Aligned carbon nanotube array functionalization for enhanced atomic layer deposition of platinum electrocatalysts. Appl. Surf. Sci. 2012, 258, 5212–5221. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Zhou, Q.; Meng, B.; Zhao, J.; Qiu, J.; Gogotsi, Y. Low-temperature plasma-assisted preparation of graphene supported palladium nanoparticles with high hydrodesulfurization activity. J. Mater. Chem. 2012, 22, 14363–14368. [Google Scholar] [CrossRef]
- Choi, S.-H. Unique properties of graphene quantum dots and their applications in photonic/electronic devices. J. Phys. D Appl. Phys. 2017, 50, 103002. [Google Scholar] [CrossRef]
- Jeong, H.M.; Lee, J.W.; Shin, W.H.; Choi, Y.J.; Shin, H.J.; Kang, J.K.; Choi, J.W. Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Lett. 2011, 11, 2472–2477. [Google Scholar] [CrossRef]
- Tozzini, V.; Pellegrini, V. Prospects for hydrogen storage in graphene. Phys. Chem. Chem. Phys. 2013, 15, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Feng, Y.; Dong, P.; Huang, J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front. Chem. 2019, 7, 671. [Google Scholar] [CrossRef]
- Kulkarni, G.S.; Reddy, K.; Zhong, Z.; Fan, X. Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nat. Commun. 2014, 5, 4376. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, J.; Li, F.; Jia, W.; Liang, D.; Chen, H.; Li, R.; Hu, J.; Ni, J.; Wu, T.; et al. Nitrogen-doped graphene supported palladium-nickel nanoparticles with enhanced catalytic performance for formic acid oxidation. Electrochim. Acta 2016, 220, 83–90. [Google Scholar] [CrossRef]
- Yeh, C.-C.; Chen, D.-H. Ni/reduced graphene oxide nanocomposite as a magnetically recoverable catalyst with near infrared photothermally enhanced activity. Appl. Catal. B Environ. 2014, 150-151, 298–304. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, L.; Gao, J.; Liu, Y.; Gao, C.; Yan, J. Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J. Mater. Chem. A 2013, 1, 7384–7390. [Google Scholar] [CrossRef]
- Revathy, T.; Dhanavel, S.; Sivaranjani, T.; Narayanan, V.; Maiyalagan, T.; Stephen, A. Highly active graphene-supported palladium-nickel alloy nanoparticles for catalytic reduction of 4-nitrophenol. Appl. Surf. Sci. 2018, 449, 764–771. [Google Scholar] [CrossRef]
- Liu, L.; Chen, R.; Liu, W.; Wu, J.; Gao, D. Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide. J. Hazard. Mater. 2016, 320, 96–104. [Google Scholar] [CrossRef]
- Minati, L.; Aguey-Zinsou, K.-F.; Micheli, V.; Speranza, G. Palladium nanoparticle functionalized graphene xerogel for catalytic dye reduction. Dalton Trans. 2018, 47, 14573–14579. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shu, H.; Chang, G.; Ji, K.; Oyama, M.; Liu, X.; He, Y. Facile synthesis of palladium–graphene nanocomposites and their catalysis for electro-oxidation of methanol and ethanol. Electrochim. Acta 2013, 109, 570–576. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, Y.; Liao, H.; Engelhard, M.H.; Yin, G.; Lin, Y. Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets. ACS Nano 2011, 5, 1785–1791. [Google Scholar] [CrossRef]
- Ji, K.; Chang, G.; Oyama, M.; Shang, X.; Liu, X.; He, Y. Efficient and clean synthesis of graphene supported platinum nanoclusters and its application in direct methanol fuel cell. Electrochim. Acta 2012, 85, 84–89. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Zhao, Q.; Zhang, X.; Di, L. NH3 plasma synthesis of N-doped activated carbon supported Pd catalysts with high catalytic activity and stability for HCOOH dehydrogenation. Int. J. Hydrogen Energy 2020, 45, 21380–21391. [Google Scholar] [CrossRef]
- Zhang, J.S.; Wang, H.Y.; Zhao, Q.; Di, L.B.; Zhang, X.L. Facile synthesis of PdAu/C by cold plasma for efficient dehydrogenation of formic acid—ScienceDirect. Int. J. Hydrogen Energ. 2020, 45, 9624–9634. [Google Scholar] [CrossRef]
- De Silva, K.; Huang, H.-H.; Joshi, R.; Yoshimura, M. Chemical reduction of graphene oxide using green reductants. Carbon 2017, 119, 190–199. [Google Scholar] [CrossRef]
- Zhang, W.; Zou, X.; Zhao, J. Rapid production of a bulk of porous mesh reduced graphene oxide films using a naked flame. J. Mater. Chem. C 2015, 3, 2788–2791. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Zhang, Y.; Duan, D.; Di, L. Hydrogen cold plasma for synthesizing Pd/C catalysts: The effect of support–metal ion interaction. Plasma Sci. Technol. 2017, 20, 014016. [Google Scholar] [CrossRef]
- Qi, B.; Di, L.; Xu, W.; Zhang, X. Dry plasma reduction to prepare a high performance Pd/C catalyst at atmospheric pressure for CO oxidation. J. Mater. Chem. A 2014, 2, 11885–11890. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, F.; Zhao, L.; Yang, W.; Yao, J. Evidence of a Unique Electron Donor−Acceptor Property for Platinum Nanoparticles as Studied by XPS. Langmuir 2006, 22, 4480–4482. [Google Scholar] [CrossRef]
- Xu, Z.; Qi, B.; Di, L.; Zhang, X. Partially crystallized Pd nanoparticles decorated TiO2 prepared by atmospheric-pressure cold plasma and its enhanced photocatalytic performance. J. Energy Chem. 2014, 23, 679–683. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Y.; Wang, J.-G.; Song, J.; Li, Q.; Dong, M.; Liu, C.-J. CO oxidation over graphene supported palladium catalyst. Appl. Catal. B Environ. 2012, 125, 189–196. [Google Scholar] [CrossRef]
- Sheng, Z.-H.; Shao, L.; Chen, J.-J.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano 2011, 5, 4350–4358. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, Y.; Zhang, L.; Wang, B.; Li, Z.; Liu, C.; Wang, H. Preparation of Pd/GO/ITO composite electrode and degradation of 2,4-chlorophene. J. Mater. Sci. 2019, 55, 1525–1535. [Google Scholar] [CrossRef]
- Aguilar-Bolados, H.; Yazdani-Pedram, M.; Quinteros-Jara, E.; Cuenca-Bracamonte, Q.; Quijada, R.; Carretero-González, J.; Avilés, F.; Lopez-Manchado, M.A.; Verdejo, R. Synthesis of sustainable, lightweight and electrically conductive polymer brushes grafted multi-layer graphene oxide. Polym. Test. 2021, 93, 106986. [Google Scholar] [CrossRef]
- Di, L.; Zhang, J.; Zhang, X. A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts. Plasma Process. Polym. 2018, 15, 1700234. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.; Wang, X.; Guan, N.; Li, L. Palladium on graphene as efficient catalyst for solvent-free aerobic oxidation of aromatic alcohols: Role of graphene support. Appl. Catal. B Environ. 2013, 136–137, 177–185. [Google Scholar] [CrossRef]
- Ni, Z.H.; Wang, H.M.; Kasim, J.; Fan, H.M.; Yu, T.; Wu, Y.H.; Feng, Y.P.; Shen, Z.X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763. [Google Scholar] [CrossRef] [PubMed]
- Galvan, V.; Glass, D.E.; Baxter, A.F.; Prakash, G.K.S. Reduced Graphene Oxide Supported Palladium Nanoparticles for Enhanced Electrocatalytic Activity toward Formate Electrooxidation in an Alkaline Medium. ACS Appl. Energy Mater. 2019, 2, 7104–7111. [Google Scholar] [CrossRef]
- Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: A trusted model reaction to test nanoparticle catalysts. Chem. Commun. 2015, 51, 9410–9431. [Google Scholar] [CrossRef] [PubMed]
- Neal, R.D.; Inoue, Y.; Hughes, R.A.; Neretina, S. Catalytic Reduction of 4-Nitrophenol by Gold Catalysts: The Influence of Borohydride Concentration on the Induction Time. J. Phys. Chem. C 2019, 123, 12894–12901. [Google Scholar] [CrossRef]
- Liu, J.; Yan, X.; Wang, L.; Kong, L.; Jian, P. Three-dimensional nitrogen-doped graphene foam as metal-free catalyst for the hydrogenation reduction of p-nitrophenol. J. Colloid Interface Sci. 2017, 497, 102–107. [Google Scholar] [CrossRef]
- Gu, S.; Wunder, S.; Lu, Y.; Ballauff, M.; Fenger, R.; Rademann, K.; Jaquet, B.; Zaccone, A. Kinetic Analysis of the Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles. J. Phys. Chem. C 2014, 118, 18618–18625. [Google Scholar] [CrossRef]
- Chen, X.M.; Cai, Z.X.; Chen, X.; Oyama, M. AuPd bimetallic nanoparticles decorated on graphene nanosheets: Their green synthesis, growth mechanism and high catalytic ability in 4-nitrophenol reduction. J. Mater. Chem. A 2014, 2, 5668–5674. [Google Scholar] [CrossRef]
Sample | Pd Composition (%) | Pd/C Atomic Ratio | O/C Atomic Ratio | ||
---|---|---|---|---|---|
Pd0 | PdII | PdIV | |||
Pd/G-H | 89.03 | 10.97 | - | 0.010 | 0.056 |
Pd/G-P | 67.45 | 21.02 | 11.53 | 0.014 | 0.063 |
Catalyst | Concentration of 4-NP (mM) | Concentration of NaBH4 (mM) | Time (min) | k (min−1) | Ref. |
---|---|---|---|---|---|
Pd/G-P (5 w%) | 0.3 | 100 | 4.52 | 0.660 | This work |
Pd/G-H (5 w%) | 0.3 | 100 | 12.54 | 0.252 | This work |
Pd/rGO (1 w%) | 10 | 10 | 180 | 0.0051 | [2] |
Pd/C (5 w%) | 10 | 10 | 210 | 0.0064 | [2] |
Pd/PNGO (1 w%) | 10 | 10 | 20 | 0.1676 | [2] |
Au-Ag/GO(ΙΙ) | 1.54 | 880 | 5 | 0.761 | [23] |
Pd-Ni/rGO (30 w%) | 0.5 | 30 | 12 | 0.16 | [24] |
Ni0.5Pd0.5/NrGO | 0.05 | 100 | 2.67 | 1.02 | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Bu, D.; Li, Z.; Zhang, X.; Di, L. Cold Plasma Preparation of Pd/Graphene Catalyst for Reduction of p-Nitrophenol. Nanomaterials 2021, 11, 1341. https://doi.org/10.3390/nano11051341
Zhao Q, Bu D, Li Z, Zhang X, Di L. Cold Plasma Preparation of Pd/Graphene Catalyst for Reduction of p-Nitrophenol. Nanomaterials. 2021; 11(5):1341. https://doi.org/10.3390/nano11051341
Chicago/Turabian StyleZhao, Qian, Decai Bu, Zhihui Li, Xiuling Zhang, and Lanbo Di. 2021. "Cold Plasma Preparation of Pd/Graphene Catalyst for Reduction of p-Nitrophenol" Nanomaterials 11, no. 5: 1341. https://doi.org/10.3390/nano11051341
APA StyleZhao, Q., Bu, D., Li, Z., Zhang, X., & Di, L. (2021). Cold Plasma Preparation of Pd/Graphene Catalyst for Reduction of p-Nitrophenol. Nanomaterials, 11(5), 1341. https://doi.org/10.3390/nano11051341