Achieving Ultra-High Performance Concrete by Using Packing Models in Combination with Nanoadditives
Abstract
:1. Introduction
2. Theoretical Background: Packing Models
3. Effect of Hydration of Nanoadditives
4. Experimental Campaign: Material Characterization and Results
4.1. Material Characterization
4.2. Results and Discussion
5. Conclusions
- (1)
- A densification of UHPC by means of packing models in combination with the assessment of the activity of nanoadditives in the hydration processes of cement is a promising way for improving the design of UHPC. The maximum compactness of the particles, when nanoadditives are used, does not always obtain the best strength and durability of the UHPC. Consideration of the role of nanoadditions in gaining strength and durability properties is a key aspect.
- (2)
- The highest compactness of the three sands used was achieved with the use of two of them (the thickest, S3 and S1, with 60% of aggregate S3 achieved, through De Larrard’s packing model, a compactness of φS3−S1 = 0.70). The compactness was unaffected by the use of an intermediate sand, S2.
- (3)
- The use of nanoadditions of various sizes permits an increase, through use of the same model, in the compactness of the mixtures. The higher degree of compactness was achieved by using three additions: limestone filler, silica fume and nanosilica (φ = 0.7899).
- (4)
- The measurements of the mixing times, by using the amperemeter of the mixer, were always longer for the mixes with three nanoadditives than for ones with two nanoadditions for the same percentages of additive.
- (5)
- The designs made with three additions and higher cement contents led to better compressive strengths at seven days than those designs made with two additions and lower cement contents. The presence of nanoadditives, such as nanosilica, improved C-S-H gel formation and thus achieved better results at earlier ages.
- (6)
- The compressive strength results for 28-day-old mixtures with two additions were good and even higher than those obtained with mixtures with three additions, in spite of exhibiting lower compactness and cement contents. A higher percentage of nanoaddition in the mixture may be inadequate and lead to the opposite effect.
- (7)
- The mixture with additions of metakaolin and nanosilica, with the latter showing slightly lower percentages than other mixtures with three additions 1.5% in volume, allows higher compressive strengths alone to be achieved compared to when using nanosilica. The synergy in the use of both components is demonstrated.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yu, R.; Spiesz, P.; Brouwers, H. Effect of nano-silica on the hydration and microstructure development of Ultra-High Performance Concrete (UHPC) with a low binder amount. Constr. Build. Mater. 2014, 65, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Kunther, W.; Dai, Z.; Skibsted, J. Thermodynamic modeling of hydrated white Portland cement–metakaolin–limestone blends utilizing hydration kinetics from 29Si MAS NMR spectroscopy. Cem. Concr. Res. 2016, 86, 29–41. [Google Scholar] [CrossRef]
- Golewsk, G.L. Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition. Energies 2020, 13, 2184. [Google Scholar] [CrossRef]
- Li, H.; Xiao, H.-G.; Yuan, J.; Ou, J. Microstructure of cement mortar with nano-particles. Compos. Part B Eng. 2004, 35, 185–189. [Google Scholar] [CrossRef]
- ACI. ACI 239R-18: Ultra-High Performance Concrete: An Emerging Technology Report (2018); American Concrete Institute: Farmington Hills, MI, USA, 2018. [Google Scholar]
- Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community; FHWA-HRT-13-060; Federal Highway Administration: Washington, DC, USA, 2013.
- NF P18-710, National Addition to Eurocode 2—Design of Concrete Structures: Specific Rules for Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC); Association Française de Normalisation (AFNOR): La Plaine Saint-Denis, France, 2016.
- Serna, P.; Lo Monte, F.; Mezquida-Alcaraz, E.J.; Cuenca, E.; Mechtcherine, V.; Reichardt, M.; Ferrara, L. Upgrading the Concept of Uhpfrc for High Durability in the Cracked State: The concept of Ultra High Durability Concrete (UHDC) in the Approach of the H2020 Project Reshealience. In Sustainable Materials Systems and Structures (SMSS 2019); RILEM Publications: Rovinj, Crotatia, 2019. [Google Scholar]
- P.C.A. PCA (Portland Cement Association). Available online: https://www.cement.org/learn/concrete-technology/concrete-design production/ultra-high-performance-concrete.2019 (accessed on 17 January 2021).
- Naaman, A.E.; Wille, K. Some Correlation Between High Packing Density, Ultra-High. In De 2° Congresso Ibérico Sobre Betão Auto-Compactável; Universidade do Minho, DEC: Guimaraes, Portugal, 2010. [Google Scholar]
- Teichmann, T.; Schmidt, M. Influence of the packing density of fine particles on structure, strength and durability of UHPC. In De International Symposium on Ultra High Performance Concrete; Kassel University Press GmbH: Kassel, Germany, 2004. [Google Scholar]
- Cumberland, D.; Crawford, R. The Packing of Particles; Elsiever: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Koutný, O.; Kratochvíl, J.; Švec, J.; Bednárek, J. Modelling of packing density for particle composites design. Procedia Eng. 2016, 151, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Konakawa, Y.; Ishizaki, K. The particle size distribution for the highest relative density in a compacted body. Powder Technol. 1990, 63, 241–246. [Google Scholar] [CrossRef]
- Grinspan, P. Interpretación y medición comparada de líneas granulométricas continuas. Mater. Construcción CSIC 1979, 29, 37–47. [Google Scholar] [CrossRef]
- Andreasen, A.H.M. Ueber die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen Körnern (mit einigen Experimenten). Kolloid-Zeitschrif 1930, 50, 217–228. [Google Scholar] [CrossRef]
- Brouwers, H.; Radix, H. Self-compacting concrete: The role of the particle size distribution. In First International Symposium on Design, Performance and Use of Self-Consolidating Concrete; Rilem; Shi, C., Ou, Z., Khayat, K.H., Eds.; RILEM: Changsha, China, 2005. [Google Scholar]
- Funk, J.; Dinger, D. Predictive Process Control of Crowded Particulate Suspension, Applied to Ceramic Manufacturing; Kluwer Academic Press: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Yu, R.; Spiesz, P.; Brouwers, H. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cem. Concr. Res. 2014, 56, 29–39. [Google Scholar] [CrossRef]
- Espinoza. Estudio de Dosificación de Hormigón de Ultra Alta Resistencia, Basada en el Empaquetamiento de los Áridos. Master’s Thesis, TFM Universidad Politécnica de Madrid, Madrid, Spain, 2010. [Google Scholar]
- Masuda, H.; Higashitani, K.; Yoshida, H. Powder Technology. Fundamentals of Particles, Powder Beds and Particle Generation; CRP Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Liu, S.; Ha, Z. Prediction of random packing limit for multimodal particle mixtures. Powder Technol. 2002, 126, 283–296. [Google Scholar] [CrossRef]
- Roquier, G. Etude de la Compacité Optimale des Mélanges Granulaires Binaires: Classe Granulaire Dominante, e de Paroi, de Desserrement; T.D. Université Paris-Est, Ifsttar, Navier: Paris, France, 2014. [Google Scholar]
- Ben-Aïm, R. Étude de la texture des empilements de grains. In Application à la Détermination de la Perméabilité des Mélanges Binaires en Régime Moléculaire, Intermédiaire, Laminaire; T.D. ’Université de Nancy: Nancy, France, 1970. [Google Scholar]
- Stovall, T.; De Larrard, F.; Buil, M. Linear Packing Density Model Grain Mixtures. Powder Technol. 1986, 48, 1–12. [Google Scholar] [CrossRef]
- De Larrard, F. Structures Granulaires et Formulation des Bétons; LCPC: Nantes, France, 1999. [Google Scholar]
- Sedran, T.; De Larrard, F. Optimization of ultra hight performance concrete by using a packing model. Cem. Concr. Res. 1994, 24, 997–1009. [Google Scholar]
- Mooney, M. The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 1951, 6, 162–170. [Google Scholar] [CrossRef]
- Yu, A.B.; Standish, N. An Analytical-Parametric Theory of the Random Packing of Particles. Powder Technol. 1988, 55, 171–186. [Google Scholar] [CrossRef]
- De Larrard, F. Formulation et Propriétés des Bétons à Très Hautes Performances; Rapport de Recherche LPC n°149: Paris, France, 1988. [Google Scholar]
- Yu, A.; Zou, R.; Standish, Y.N. Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures. Ind. Eng. Chem. Res. 1996, 35, 3730–3741. [Google Scholar] [CrossRef]
- Haruehansapong, S.; Pulngern, T.; Chucheepsakul, S. Effect of the particle size of nanosilica on the compressive strength and the optimum replacement content of cement mortar containing nano SiO2. Constr. Build. Mater. 2014, 50, 471–477. [Google Scholar] [CrossRef]
- Wang, X. Effect and mechanisms of nanomaterials on interface betweenaggregates and cement mortars. Constr. Build. Mater. 2020, 240, 117942. [Google Scholar] [CrossRef]
- Andrade, D.D.S.; Rêgo, J.H.D.S.; Morais, P.C.; Rojas, M.F. Chemical and mechanical characterization of ternary cement pastes containing metakaolin and nanosilica. Constr. Build. Mater. 2018, 159, 18–26. [Google Scholar] [CrossRef]
- LPC. LPC N° 61 Essai de Compacité des Fractions Granulaires; LCPC: Paris, France, 2004. [Google Scholar]
- Sedran, T. Rheologie et Rheometrie des Betons. Application Aux Betons Autonivelants; T.D. L’ecole Nationale des Pontos et Chaussees: Paris, France, 1999. [Google Scholar]
- EN 196-3 Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness 2017; CEN: Brussels, Belgium, 2017.
- Sedran, T.; De Larrard, F.; Le Guen, L. Determintion de la compacité des ciments et additions minerales a la sonda de Vicat. Note Tech. LCPC Nantes 2007, 270–271, 155–163. [Google Scholar]
- Formagini, S. Dosagem Científica e Caracterizaçao Mecânica de Concretos de Altíssimo Desempenho; Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- ASTM. ASTM C939 Standard Test Method for Flow of Grout for Preplaced-Aggregate Concrete (Flow Cone Method); ASTM: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Rong, Z.; Sun, W.; Xiao, H.; Wang, W. Effect of Silica Fume and Fly Ash on Hydration and Microstructure Evolution of Cement Based Composites at Low Water–binder Ratios. Constr. Build. Mater. 2014, 51, 446–450. [Google Scholar] [CrossRef]
- Rong, Z.; Sun, W.; Xiao, H.; Jian, G. Effects of Nano-SiO2 Particles on the Mechanical and Microstructural Properties of Ultra-high Performance Cementitious Composites. Cem. Concr. Compos. 2015, 56, 25–31. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete. Compos. Part B Eng. 2011, 42, 570–578. [Google Scholar] [CrossRef]
- Jennings, H.; Chen, J.; Thomas, J. Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement. J. Chem. Chem. 2009, 113, 4327–4334. [Google Scholar]
- Romero, H.J.; Gálvez, I.; Lucea, Y.A. Moragues, Durabilidad y propiedades mecánicas del hormigón autocompactante con adición de microsílice y nanosílice. In 3° Congreso Iberoamericano Sobre Hormigón Autocompactante; Archivo Digital UPM: Madrid, Spain, 2012. [Google Scholar]
- Gerrit, L.; Dietmar, Y.S. Controlling cement hydration with nanoparticles. Cem. Concr. Compos. 2015, 57, 64–67. [Google Scholar]
- Senff, L.; Hotzab, D.; Lucasc, S.; Ferre, V. Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars. Mater. Sci. Eng. 2012, 532, 354–361. [Google Scholar] [CrossRef]
- Oertel, T.; Hutter, F.; Tänzer, R.; Helbig, U.; Sextl, G. Primary particle size and agglomerate size effects of amorphous silica in ultra-high performance concrete. Cem. Concr. Compos. 2013, 37, 61–67. [Google Scholar] [CrossRef]
- Tafraoui, A.; Escadeillas, G.; Soltane, L.; Vidal, T. Metakaolin in the formulation of UHPC. Constr. Build. Mater. 2009, 23, 669–674. [Google Scholar] [CrossRef]
- El-Gamal, S.; Amin, M.; Ramadan, M.R.I. Hydration characteristics and compressive strength of hardened cement pastes containing nano-metakaolin. HBRC J. 2017, 13, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Morsy, M.S.; Al-Salloum, Y.; Almusallam, T.; Abbas, H. Effect of nano-metakaolin addition on the hydration characteristics of fly ash blended cement mortar. J. Therm. Anal. Calorim. 2013, 116, 845–852. [Google Scholar] [CrossRef]
- ASTM E 1131-20, Standard Test for Compositional Analysis by Thermogravimetry; ASTM International: West Conshocken, PA, USA, 2020.
- Bhatty, J. Hydartion versus strength in a Portland cement developed frome domestic mineral wastes—A compartive study. Thermochim. Acta 1986, 106, 93–103. [Google Scholar] [CrossRef]
- Pane, I.; Hansen, W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem. Concr. Res. 2005, 35, 1155–1164. [Google Scholar] [CrossRef]
- Monteagudo, S.; Moragues, A.; Gálvez, J.; Casati, M.; Reyes, E. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases. Thermochim. Acta 2014, 592, 37–51. [Google Scholar] [CrossRef]
- García, R.; Henao, N.; de la Rubia, M.A.; Moragues, A.; Fernández, J. Early contributing nanostructured cementitious matrix designs: Benefits in durable features at early ages. Constr. Build. Mater. 2020, 241, 117941. [Google Scholar] [CrossRef]
- Alonso-Domínguez, D.; Álvarez-Serrano, I.; Reyes, E.; Moragues, A. New mortars fabricated by electrostatic dry deposition of nano and microsilica additions: Enhanced properties. Constr. Build. Mater. 2017, 135, 186–193. [Google Scholar] [CrossRef]
- Féret, R. Sur les Essais des Sables Destinés à la Fabrication des Mortiers; Impr. Nationale: Paris, France, 1894. [Google Scholar]
Sphere (n°) | Relative Diameter | Packing (%) |
---|---|---|
1 | 1 | 74.0 |
2 | 0.414 | 79.3 |
3 | 0.225 | 81.0 |
4 | 0.177 | 84.2 |
5 | 0.116 | 85.1 |
Type of Packing | Packing Mode | K |
---|---|---|
Dry packing | Simple stacking | 4.1 |
Manual compaction with bar | 4.5 | |
Vibration | 4.75 | |
Vibration + pressure (10 KPa) | 9 | |
Wet packing | Water demand | 6.7 |
Virtual packing | ∝ |
Mix | Aggreg 1 (S3) | Aggreg 3 (S1) | Cement | Filler Limestone | Metakaolin | Sílica F. | nSi | φ |
---|---|---|---|---|---|---|---|---|
1 | 34.1 | 22.7 | 35.2 | 4 | 4 | 0 | 0.7750 | |
2 | 34.1 | 22.7 | 35.2 | 4 | 4 | 0 | 0.7750 | |
3 | 34.1 | 22.7 | 35.2 | 4 | 4 | 0 | 0.7750 | |
5 | 27.1 | 18 | 43.3 | 4.1 | 4.2 | 3.3 | 0.7899 | |
6 | 27.1 | 18 | 43.3 | 4.1 | 4.2 | 3.3 | 0.7899 | |
7 | 27.1 | 18 | 43.3 | 4.2 | 4.2 | 3.2 | 0.7890 | |
8 | 27.1 | 17.9 | 43.3 | 5.7 | 4 | 2 | 0.7870 | |
9 | 27.1 | 19.6 | 43.3 | 4 | 4 | 2 | 0.7881 |
Mix | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|
φ | 0.775 | 0.775 | 0.775 | 0.7899 | 0.7899 | 0.789 | 0.787 | 0.7881 |
K | 6.45 | 6.45 | 6.45 | 6.45 | 6.45 | 6.45 | 6.45 | 6.45 |
Aggreg 1 S3 | 27.2 | 27.2 | 27.2 | 20.7 | 20.7 | 20.7 | 20.6 | 21.5 |
Aggreg 3 S1 | 18.1 | 18.1 | 18.1 | 13.8 | 13.8 | 13.8 | 13.8 | 14.3 |
Cement | 28 | 28 | 28 | 33.2 | 33.2 | 33.2 | 33.2 | 33.2 |
Fíller | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 4.5 | |
Sílica F | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.3 | 3.1 | 3.1 |
Metakaolín | 3.1 | |||||||
nSi | 2.5 | 2.5 | 2.4 | 1.5 | 1.5 | |||
Air | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Water | 16 | 16 | 16 | 19 | 19 | 19 | 19 | 19 |
Additive SP | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 | 2.3 |
Mixing time (s) | 270 | 270 | 270 | 300 | 300 | 300 | 540 | 480 |
R7 cub (MPa) | 81.3 | 80.1 | 86.6 | 91.7 | 83 | 93.7 | 96.8 | 89.3 |
R28 cub (MPa) | 117 | 124.6 | 116.9 | 89.7 | 97.3 | 121.7 | 101.5 | 121.1 |
Mix 3 | Mix 7 | Mix 8 | |
---|---|---|---|
Mass 45 °C (g) | 65.0048 | 67.5777 | 67.4689 |
Water of equivalent Portlandite | 1.03607 | 0.93726 | 1.63098 |
Water of total Portlandite | 1.54907 | 1.34826 | 2.20598 |
% Water of CSH gel (140) | 0.032982 | 0.026503 | 0.02851684 |
% Water of free Portlandite | 0.007892 | 0.006082 | 0.00852245 |
% Water of total Portlandite | 0.02383009 | 0.01995126 | 0.03269625 |
% Water of carbonates | 0.03887405 | 0.03382773 | 0.0589605 |
CSH Gel (140)/Free Portlandite | 4.17933723 | 4.35766423 | 3.34608696 |
CSH gel (140)/Total Portlandite | 1.38405624 | 1.3283788 | 0.87217473 |
% Water of CSH gel (140)/cement content | 0.00117793 | 0.00079828 | 0.00085894 |
% Water of free Portlandite/cement content | 0.00028185 | 0.00018319 | 0.0002567 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, J.; Gálvez, J.C.; Alberti, M.G.; Enfedaque, A. Achieving Ultra-High Performance Concrete by Using Packing Models in Combination with Nanoadditives. Nanomaterials 2021, 11, 1414. https://doi.org/10.3390/nano11061414
Díaz J, Gálvez JC, Alberti MG, Enfedaque A. Achieving Ultra-High Performance Concrete by Using Packing Models in Combination with Nanoadditives. Nanomaterials. 2021; 11(6):1414. https://doi.org/10.3390/nano11061414
Chicago/Turabian StyleDíaz, Jesús, Jaime C. Gálvez, Marcos G. Alberti, and Alejandro Enfedaque. 2021. "Achieving Ultra-High Performance Concrete by Using Packing Models in Combination with Nanoadditives" Nanomaterials 11, no. 6: 1414. https://doi.org/10.3390/nano11061414
APA StyleDíaz, J., Gálvez, J. C., Alberti, M. G., & Enfedaque, A. (2021). Achieving Ultra-High Performance Concrete by Using Packing Models in Combination with Nanoadditives. Nanomaterials, 11(6), 1414. https://doi.org/10.3390/nano11061414