Extracellular Vesicle-Based Coatings Enhance Bioactivity of Titanium Implants—SurfEV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Extracellular Vesicles (EVs)
2.2. Characterization of Size, Size Distribution, Concentration, and Total Nucleic Acid Content of EVs
2.3. Characterization of the Size and Morphology of Individual EVs
2.4. Surface Modifications and EV Immobilization—SurfEV
2.4.1. The Assessment of the Presence of EVs on Ti Surfaces
2.4.2. The Assessment Calcium (Ca) and Phosphate (P) Deposition on Surfaces—Surface Bioactivity
2.5. Determination of the Effect of EVs on Cell Responses and Function
2.5.1. The Analysis of Ability of EVs to Accelerate Wound Closure
2.5.2. The Analysis of Effects of EVs on Cell Proliferation
2.5.3. The Analysis of Effects of EVs on Individual Cell Migration
2.5.4. The Analysis of Effects of EVs on Cell Morphology
2.6. Elemental Analysis of Cells Using Inductively Coupled Plasma Mass Spectroscopy—ICP-MS
2.7. Proliferation and Morphology of Cells on Ti Surfaces Coated with EVs (SurfEV)
2.7.1. Cell Culture on Ti Surfaces
2.7.2. The Analysis of Cell Proliferation on SurfEV
2.7.3. The Analysis of Cell Adhesion and Morphology on SurfEV
2.8. Statistical Analysis
3. Results
3.1. Characterization of Size, Size Distribution, Concentration, and Total Nucleic Acid Content of EVs
3.2. Investigation of the Presence of EVs on Ti Surfaces
3.3. The Assessment Ca and P Deposition on Surfaces—Surface Bioactivity
3.4. Effect of EVs Concentration on Cell Responses and Function
3.5. Elemental Analysis of Cells Using Inductively Coupled Plasma Mass Spectroscopy—ICP-MS
3.6. Proliferation and Morphology of Cells on Ti Surfaces Coated with EVs (SurfEV)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertrand, J.; Delfosse, D.; Mai, V.; Awiszus, F.; Harnisch, K.; Lohmann, C.H. Ceramic prosthesis surfaces induce an inflammatory cell response and fibrotic tissue changes. Bone Jt. J. 2018, 100-B, 882–890. [Google Scholar] [CrossRef] [PubMed]
- D’Imporzano, M.; Liuni, F.M.; Tarantino, U. Acetabular fragility fractures in elderly patients. Aging Clin. Exp. Res. 2011, 23, 71–73. [Google Scholar]
- Blázquez-Hinarejos, M.; Ayuso-Montero, R.; Jané-Salas, E.; López-López, J. Influence of surface modified dental implant abutments on connective tissue attachment: A systematic review. Arch. Oral Biol. 2017, 80, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Mas-Moruno, C.; Su, B.; Dalby, M.J. Multifunctional coatings and nanotopographies: Toward cell instructive and antibacterial implants. Adv. Healthc. Mater 2019, 8, e1801103. [Google Scholar] [CrossRef] [PubMed]
- Carthew, J.; Abdelmaksoud, H.H.; Cowley, K.J.; Hodgson-Garms, M.; Elnathan, R.; Spatz, J.P.; Brugger, J.; Thissen, H.; Simpson, K.J.; Voelcke, N.H.; et al. Next generation cell culture tools featuring micro- and nanotopographies for biological screening. Adv. Funct. Mater. 2021, 2100881. [Google Scholar] [CrossRef]
- Pansani, T.N.; Basso, F.G.; Souza, I.D.R.; Hebling, J.; de Souza Costa, C.A. Characterization of titanium surface coated with epidermal growth factor and its effect on human gingival fibroblasts. Arch. Oral Biol. 2019, 29, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Decuzzi, P.; Ferrari, M. Modulating cellular adhesion through nanotopography. Biomaterials 2010, 31, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, J.; Zhou, Z.; Zhou, S.; Hu, Z. Micro-/Nano-Scales direct cell behavior on biomaterial surfaces. Molecules 2019, 24, 75. [Google Scholar] [CrossRef] [Green Version]
- Le Guéhennec, L.; Soueidan, A.; Layrolle, P.; Amouriq, Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 2007, 23, 844–854. [Google Scholar] [CrossRef]
- Mandracci, P.; Mussano, F.; Rivolo, P.; Carossa, S. Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings 2016, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Damiati, L.; Eales, M.G.; Nobbs, A.H.; Su, B.; Tsimbouri, P.M.; Salmeron-Sanchez, M.; Dalby, M.J. Impact of surface topography and coating on osteogenesis and bacterial attachment on titanium implants. J. Tissue Eng. 2018, 2, 1–16. [Google Scholar] [CrossRef]
- Ponche, A.; Bigerelle, M.; Anselme, K. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 1: Physico-chemical effect. Proc. Inst. Mech. Eng. H 2010, 224, 1471–1486. [Google Scholar] [CrossRef]
- Ting, M.; Jefferies, S.R.; Xia, W.; Engqvist, H.; Suzuki, J.B. Classification and effects of implant surface modification on the bone: Human cell-based in vitro studies. J. Oral Implantol. 2017, 43, 58–83. [Google Scholar] [CrossRef]
- Jonge, L.T.; Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Jansen, J.A. Organic-inorganic surface modifications for titanium implant surfaces. Pharm Res. 2008, 25, 2357–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzás, E.I.; Di Vizio, D.; Gardiner, C.; Gho, Y.; Kurochkin, I.V.; Mathivanan, S.; Quesenberry, P.; et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: A position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2014, 22, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Askenase, P.W. Exosome extracellular vesicles: Vehicle for simultaneous immune and genetic therapy. Microbiol. Immunol. Pathol. 2020, 2, 1–3. [Google Scholar]
- Kim, S.Y.; Khanal, D.; Tharkar, P.; Kalionis, B.; Chrzanowski, W. None of us is the same as all of us: Resolving the heterogeneity of extracellular vesicles using single-vesicle, nanoscale characterization with resonance enhanced atomic force microscope infrared spectroscopy (AFM-IR). Nanoscale Horiz. 2018, 3, 430–438. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Wu, L.; Hua, K.; Ding, J. Regeneration-related functional cargoes in mesenchymal stem cell-derived small extracellular vesicles. Stem Cells Dev. 2020, 29, 15–24. [Google Scholar] [CrossRef]
- Wang, X.; Omar, O.; Vazirisani, F.; Thomsen, P.; Ekström, K. Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLoS ONE 2018, 13, e0193059. [Google Scholar] [CrossRef]
- Wang, X.; Shah, F.A.; Vazirisani, F.; Johansson, A.; Palmquist, A.; Omar, O.; Ekström, K.; Thomsen, P. Exosomes influence the behavior of human mesenchymal stem cells on titanium surfaces. Biomaterials 2020, 230, 119571. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, G.D.; Menicanin, D.; Gronthos, S.; Manuelpillai, U.; Abumaree, M.H.; Pertile, M.D.; Brennecke, S.P.; Kalionis, B. Ectopic bone formation by mesenchymal stem cells derived from human term placenta and the decidua. PLoS ONE 2015, 10, e0141246. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.Q.; Kusuma, G.D.; Al-Sowayan, B.; Pace, R.A.; Isenmann, S.; Pertile, M.D.; Gronthos, S.; Abumaree, M.H.; Brennecke, S.P.; Kalionis, B. Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta. Placenta 2016, 39, 134–146. [Google Scholar] [CrossRef]
- Uchiyama, S.; Yamaguchi, M. Beta-cryptoxanthin stimulates cell differentiation and mineralization in osteoblastic MC3T3-E1 cells. J. Cell Biochem. 2005, 95, 1224–1234. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Weitzmann, M.N. The bone anabolic carotenoid beta-cryptoxanthin enhances transforming growth factor-beta1-induced SMAD activation in MC3T3 pre-osteoblasts. Int. J. Mol. Med. 2009, 24, 671–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, M. Role of carotenoid β-cryptoxanthin in bone homeostasis. J. Biomed. Sci. 2012, 19, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, S.; Nath, S.; Sugawara, Y.; Divakarla, K.; Das, T.; Manos, J.; Chrzanowski, W.; Matsushita, T.; Kokubo, T. Two-in-One biointerfaces-antimicrobial and bioactive nanoporous gallium titanate layers for titanium implants. Nanomaterials 2017, 20, 229. [Google Scholar] [CrossRef] [PubMed]
- Kokubo, T.; Kim, H.M.; Kawashita, M.; Nakamura, T. Bioactive metals: Preparation and properties. J. Mater. Sci. Mater. Med. 2004, 15, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Bohner, M.; Lemaitre, J. Can bioactivity be tested in vitro with SBF solution? Biomaterials 2009, 30, 2175–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO/FDIS 23317. Implants for Surgery—In Vitro Evaluation for Apatite-Forming Ability of Implant Materials. Available online: https://www.iso.org/standard/65054.html (accessed on 9 April 2019)2007; pp. 1–12.
- Chrzanowski, W.; Szade, J.; Hart, A.D.; Knowles, J.C.; Dalby, M.J. Biocompatible, smooth, plasma-treated nickel–titanium surface—An adequate platform for cell growth. J. Biomater. Appl. 2012, 26, 707–731. [Google Scholar] [CrossRef]
- Chen, Y.; Song, Y.; Zhang, C.; Zhang, F.; O’Donnell, L.; Chrzanowski, W.; Cai, W. CellTrack R-CNN: A novel end-to-end deep neural network for cell segmentation and tracking in microscopy images. arXiv 2021, arXiv:2102.10377. [Google Scholar]
- Alm, J.J.; Heino, T.J.; Hentunen, T.A.; Väänänen, H.K.; Aro, H.T. Transient 100 nM dexamethasone treatment reduces inter- and intraindividual variations in osteoblastic differentiation of bone marrow-derived human mesenchymal stem cells. Tissue Eng. Part C Methods 2012, 18, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Huang, N.; Chen, J.; Chen, C.; Chen, J.; Chen, H. Endothelial cell and platelet behavior on titanium modified with a multilayer of polyelectrolytes. J. Bioact. Compat. Polym. 2009, 24, 129–150. [Google Scholar] [CrossRef]
- Lee, J.; Wen, B.; Carter, E.A.; Combes, V.; Grau, G.E.R.; Lay, P.A. Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. ASEB J. 2017, 31, 2817–2827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Li, M.; Cheng, W. FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues. Spectroscopy 2007, 21, 1–30. [Google Scholar] [CrossRef]
- Kim, S.Y.; Joglekar, M.V.; Hardikar, A.A.; Phan, T.H.; Khanal, D.; Tharkar, P.; Limantoro, C.; Johnson, J.; Kalionis, B.; Chrzanowski, W. Placenta stem/stromal cell–derived extracellular vesicles for potential use in lung repair. Proteomics 2019, 19, e1800166. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Himeno, T.; Kawashita, M.; Lee, J.H.; Kokubo, T.; Nakamura, T. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. J. Biomed. Mater. Res. A 2003, 67, 1305–1309. [Google Scholar] [CrossRef]
- Brånemark, R.; Brånemark, P.I.; Rydevik, B.; Myers, R.R. Osseointegration in skeletal reconstruction and rehabilitation: A review. J. Rehabil. Res. Dev. 2001, 38, 175–181. [Google Scholar]
- Terheyden, H.; Lang, N.P.; Bierbaum, S.; Stadlinger, B. Osseointegration-communication of cells. Clin. Oral Implant. Res. 2012, 23, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, X.; Li, H.; Chen, C.; Hu, B.; Niu, X.; Li, Q.; Zhao, B.; Xie, Z.; Wang, Y. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res. Ther. 2016, 7, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y.; Wang, L.; Gao, Z.; Chen, G.; Zhang, C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci. Rep. 2016, 6, 21961. [Google Scholar] [CrossRef]
- Kusuma, G.D.; Abumaree, M.H.; Pertile, M.D.; Perkins, A.V.; Brennecke, S.P.; Kalionis, B. Mesenchymal stem/ttromal cells derived from a reproductive tissue niche under oxidative stress have high aldehyde dehydrogenase activity. Stem Cell Rev. Rep. 2016, 12, 2285–2297. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Shi, A.; Hill, S.; Grant, C.; Kokkinos, M.I.; Murthi, P.; Georgiou, H.M.; Brennecke, S.P.; Kalionis, B. Decidual mesenchymal stem/stromal cell-derived extracellular vesicles ameliorate endothelial cell proliferation, inflammation, and oxidative stress in a cell culture model of preeclampsia. Pregnancy Hypertens. 2020, 22, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Mó, M.; Siljander, P.R.; Andreu, Z.; Zavec, A.B.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 14, 27066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonrungsiman, S.; Gentleman, E.; Carzaniga, R.; Evans, N.D.; McComb, D.W.; Porter, A.E.; Stevens, M.M. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc. Natl. Acad. Sci. USA 2012, 109, 14170–14175. [Google Scholar] [CrossRef] [Green Version]
- Lotsari, A.; Rajasekharan, A.K.; Halvarsson, M.; Andersson, M. Transformation of amorphous calcium phosphate to bone-like apatite. Nat. Commun. 2018, 9, 4170. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, Y.; Sun, W.; Yang, X. First detection, characterization, and application of amorphous calcium phosphate in dentistry. J. Dent. Sci. 2012, 7, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Park, J.B. Effects of the combination of dexamethasone and fibroblast growth factor-2 on differentiation of osteoprecursor cells. Mol. Med. Rep. 2014, 9, 659–662. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Tang, L.; Qi, H.; Zhao, Q.; Liu, Y.; Zhang, Y. Dual function of magnesium in bone biomineralization. Adv. Healthc. Mater. 2019, 8, 1901030. [Google Scholar] [CrossRef]
- Zadpoor, A.A. Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 35, 134–143. [Google Scholar] [CrossRef]
Sample | Treatment |
---|---|
1 | Ti cleaned |
2 | Ti + NaOH + plasma |
3 | Ti + NaOH + plasma + DEVs |
4 | Ti + NaOH + plasma + PEVs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pansani, T.N.; Phan, T.H.; Lei, Q.; Kondyurin, A.; Kalionis, B.; Chrzanowski, W. Extracellular Vesicle-Based Coatings Enhance Bioactivity of Titanium Implants—SurfEV. Nanomaterials 2021, 11, 1445. https://doi.org/10.3390/nano11061445
Pansani TN, Phan TH, Lei Q, Kondyurin A, Kalionis B, Chrzanowski W. Extracellular Vesicle-Based Coatings Enhance Bioactivity of Titanium Implants—SurfEV. Nanomaterials. 2021; 11(6):1445. https://doi.org/10.3390/nano11061445
Chicago/Turabian StylePansani, Taisa Nogueira, Thanh Huyen Phan, Qingyu Lei, Alexey Kondyurin, Bill Kalionis, and Wojciech Chrzanowski. 2021. "Extracellular Vesicle-Based Coatings Enhance Bioactivity of Titanium Implants—SurfEV" Nanomaterials 11, no. 6: 1445. https://doi.org/10.3390/nano11061445
APA StylePansani, T. N., Phan, T. H., Lei, Q., Kondyurin, A., Kalionis, B., & Chrzanowski, W. (2021). Extracellular Vesicle-Based Coatings Enhance Bioactivity of Titanium Implants—SurfEV. Nanomaterials, 11(6), 1445. https://doi.org/10.3390/nano11061445