Exposure to TiO2 Nanostructured Aerosol Induces Specific Gene Expression Profile Modifications in the Lungs of Young and Elderly Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vivo Experimental Design, Generation, and Exposure of TiO2 Nanostructured Aerosol
2.2. Broncho-Alveolar Lavage Fluid (BALF)
2.3. Histopathological Analysis
2.4. Statistical Analysis for Physiological Data
2.5. Total RNA Extraction and Purification
2.6. Microarray Hybridization
2.7. Microarray Data Analysis
2.7.1. Comparison of Gene Expression Profiles of Young and Elderly Controls
2.7.2. Comparison of Gene Expression Profiles in Young and Elderly Animals Exposed to TiO2 Aerosol or Filtered Air (Controls)
3. Results
3.1. Biometry
3.2. BALF Cytology and Biochemistry
3.3. Lung Histopathological Analysis
3.4. Transcriptomic Analysis
3.4.1. Age Effect
3.4.2. Exposure Effect on the Young Group
3.4.3. Exposure Effect on the Elderly Group
3.4.4. Combination between Age and Exposure to TiO2 Aerosols
DEGs Common to Young and Elderly Rats
Specific DEGs in Young Rats
Specific DEGs in Elderly Rats
4. Discussion
4.1. Comparison of Experimental Conditions of Exposures to TiO2 Nano-Aerosols
4.2. Age Effect
4.3. Combination of Age and Exposure Effects—Short-Term Response
4.4. Combination of Age and Exposure Effects—Recovery Response
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riu, J.; Maroto, A.; Rius, F.X. Nanosensors in environmental analysis. Talanta 2006, 69, 288–301. [Google Scholar] [CrossRef]
- Tan, X.; Wang, X.; Chen, C.; Sun, A. Effect of soil humic and fulvic acids, pH and ionic strength on Th(IV) sorption to TiO2 nanoparticles. Appl. Radiat. Isot. 2007, 65, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Yu, X.; Wu, N.; Zhang, Y.Q. Progress of In Vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol. Res. 2017, 6, 115–133. [Google Scholar] [CrossRef] [Green Version]
- ECETOC. TR 122-Poorly Soluble Particles/Lung Overload. Available online: https://www.ecetoc.org/publication/tr-122-poorly-soluble-particles-lung-overload/ (accessed on 14 September 2020).
- Ma-Hock, L.; Burkhardt, S.; Strauss, V.; Gamer, A.O.; Wiench, K.; van Ravenzwaay, B.; Landsiedel, R. Development of a short-term inhalation test in the rat using nano-titanium dioxide as a model substance. Inhal. Toxicol. 2009, 21, 102–118. [Google Scholar] [CrossRef]
- Bermudez, E.; Mangum, J.B.; Wong, B.A.; Asgharian, B.; Hext, P.M.; Warheit, D.B.; Everitt, J.I. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol. Sci. 2004, 77, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.P.; Trochimowicz, H.J.; Reinhardt, C.F. Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years. Toxicol. Appl. Pharmacol. 1985, 79, 179–192. [Google Scholar] [CrossRef]
- Warheit, D.B.; Hansen, J.F.; Yuen, I.S.; Kelly, D.P.; Snajdr, S.I.; Hartsky, M.A. Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation. Toxicol. Appl. Pharmacol. 1997, 145, 10–22. [Google Scholar] [CrossRef]
- Warheit, D.B.; Yuen, I.S.; Kelly, D.P.; Snajdr, S.; Hartsky, M.A. Subchronic inhalation of high concentrations of low toxicity, low solubility particulates produces sustained pulmonary inflammation and cellular proliferation. Toxicol. Lett. 1996, 88, 249–253. [Google Scholar] [CrossRef]
- de Vries, M.; Faiz, A.; Woldhuis, R.R.; Postma, D.S.; de Jong, T.V.; Sin, D.D.; Bosse, Y.; Nickle, D.C.; Guryev, V.; Timens, W.; et al. Lung tissue gene-expression signature for the ageing lung in COPD. Thorax 2017, 73, 609–617. [Google Scholar] [CrossRef]
- Lowery, E.M.; Brubaker, A.L.; Kuhlmann, E.; Kovacs, E.J. The aging lung. Clin. Interv. Aging 2013, 8, 1489–1496. [Google Scholar] [CrossRef] [Green Version]
- Chezeau, L.; Sebillaud, S.; Safar, R.; Seidel, C.; Dembele, D.; Lorcin, M.; Langlais, C.; Grossmann, S.; Nunge, H.; Michaux, S.; et al. Short- and long-term gene expression profiles induced by inhaled TiO2 nanostructured aerosol in rat lung. Toxicol. Appl. Pharmacol. 2018, 356, 54–64. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Yu, T.S.; McKay, R.M.; Burns, D.K.; Kernie, S.G.; Parada, L.F. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012, 488, 522–526. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.M.; Fadeel, B. Emerging systems biology approaches in nanotoxicology: Towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicol. Appl. Pharmacol. 2016, 299, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Halappanavar, S.; Jackson, P.; Williams, A.; Jensen, K.A.; Hougaard, K.S.; Vogel, U.; Yauk, C.L.; Wallin, H. Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: A toxicogenomic study. Environ. Mol. Mutagen. 2011, 52, 425–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halappanavar, S.; Saber, A.T.; Decan, N.; Jensen, K.A.; Wu, D.; Jacobsen, N.R.; Guo, C.; Rogowski, J.; Koponen, I.K.; Levin, M.; et al. Transcriptional profiling identifies physicochemical properties of nanomaterials that are determinants of the In Vivo pulmonary response. Environ. Mol. Mutagen. 2015, 56, 245–264. [Google Scholar] [CrossRef]
- Husain, M.; Saber, A.T.; Guo, C.; Jacobsen, N.R.; Jensen, K.A.; Yauk, C.L.; Williams, A.; Vogel, U.; Wallin, H.; Halappanavar, S. Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation. Toxicol. Appl. Pharmacol. 2013, 269, 250–262. [Google Scholar] [CrossRef] [Green Version]
- Nuwaysir, E.F.; Bittner, M.; Trent, J.; Barrett, J.C.; Afshari, C.A. Microarrays and toxicology: The advent of toxicogenomics. Mol. Carcinog. 1999, 24, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, S.S.; Saber, A.T.; Williams, A.; Andersen, O.; Kobler, C.; Atluri, R.; Pozzebon, M.E.; Mucelli, S.P.; Simion, M.; Rickerby, D.; et al. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol. Appl. Pharmacol. 2015, 284, 16–32. [Google Scholar] [CrossRef]
- Rahman, L.; Wu, D.; Johnston, M.; William, A.; Halappanavar, S. Toxicogenomics analysis of mouse lung responses following exposure to titanium dioxide nanomaterials reveal their disease potential at high doses. Mutagenesis 2017, 32, 59–76. [Google Scholar] [CrossRef] [Green Version]
- Cosnier, F.; Bau, S.; Grossmann, S.; Nunge, H.; Brochard, C.; Viton, S.; Payet, R.; Witschger, O.; Gate, L. Design and characterization of an inhalation system to expose rodents to nanoaerosols. Aerosol Air Qual. Res. 2016, 16, 2989–3000. [Google Scholar] [CrossRef] [Green Version]
- Gate, L.; Disdier, C.; Cosnier, F.; Gagnaire, F.; Devoy, J.; Saba, W.; Brun, E.; Chalansonnet, M.; Mabondzo, A. Biopersistence and translocation to extrapulmonary organs of titanium dioxide nanoparticles after subacute inhalation exposure to aerosol in adult and elderly rats. Toxicol. Lett. 2017, 265, 61–69. [Google Scholar] [CrossRef]
- Brazma, A.; Hingamp, P.; Quackenbush, J.; Sherlock, G.; Spellman, P.; Stoeckert, C.; Aach, J.; Ansorge, W.; Ball, C.A.; Causton, H.C.; et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 2001, 29, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.; Barrett, T. NCBI GEO standards and services for microarray data. Nat. Biotechnol. 2006, 24, 1471–1472. [Google Scholar] [CrossRef]
- Dembele, D.; Kastner, P. Fold change rank ordering statistics: A new method for detecting differentially expressed genes. BMC Bioinform. 2014, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Marwah, V.S.; Scala, G.; Kinaret, P.A.S.; Serra, A.; Alenius, H.; Fortino, V.; Greco, D. Eutopia: Solution for Omics data Preprocessing and Analysis. Source Code Biol. Med. 2019, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Occupational Safety and Health (NIOSH). Occupational exposure to titanium dioxide. In NIOSH Curent Intelligence Bulltin; NIOSH: Washington, DC, USA, 2011. [Google Scholar]
- Mauderly, J.L. Respiration of F344 rats in nose-only inhalation exposure tubes. J. Appl. Toxicol. 1986, 6, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Boyd, A.R.; Orihuela, C.J. Dysregulated inflammation as a risk factor for pneumonia in the elderly. Aging Dis. 2011, 2, 487–500. [Google Scholar] [PubMed]
- Brandenberger, C.; Muhlfeld, C. Mechanisms of lung aging. Cell Tissue Res. 2017, 367, 469–480. [Google Scholar] [CrossRef]
- Opal, S.M.; Girard, T.D.; Ely, E.W. The immunopathogenesis of sepsis in elderly patients. Clin. Infect. Dis. 2005, 41 (Suppl. S7), S504–S512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanscheeuwijck, P.; van de Velde, E.; Fraeyman, N. Effect of aging on properties and function of beta-adrenoceptors in rat lung. Eur. J. Pharmacol. 1989, 172, 373–380. [Google Scholar] [CrossRef]
- Kalbe, B.; Knobloch, J.; Schulz, V.M.; Wecker, C.; Schlimm, M.; Scholz, P.; Jansen, F.; Stoelben, E.; Philippou, S.; Hecker, E.; et al. Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells. Front. Physiol. 2016, 7, 339. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yu, G.; Yuan, S.; Tan, C.; Xie, J.; Ding, Y.; Lian, P.; Fu, L.; Hou, Q.; Xu, B.; et al. 14,15-Epoxyeicosatrienoic acid suppresses cigarette smoke condensate-induced inflammation in lung epithelial cells by inhibiting autophagy. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, L970–L980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassian, V.H.; O’Shaughnessy, P.T.; Adamcakova-Dodd, A.; Pettibone, J.M.; Thorne, P.S. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ. Health Perspect. 2007, 115, 397–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurkiewicz, T.R.; Porter, D.W.; Hubbs, A.F.; Cumpston, J.L.; Chen, B.T.; Frazer, D.G.; Castranova, V. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part. Fibre Toxicol. 2008, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Stetson, D.B.; Medzhitov, R. Type I interferons in host defense. Immunity 2006, 25, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komai-Koma, M.; Jones, L.; Ogg, G.S.; Xu, D.; Liew, F.Y. TLR2 is expressed on activated T cells as a costimulatory receptor. Proc. Natl. Acad. Sci. USA 2004, 101, 3029–3034. [Google Scholar] [CrossRef] [Green Version]
- Banchereau, J. Interleukin 4. Int. J. Rad. Appl. Instrum. 1990, 17, 619–623. [Google Scholar] [CrossRef]
- Burger, D.; Dayer, J.M. Cytokines, acute-phase proteins, and hormones: IL-1 and TNF-alpha production in contact-mediated activation of monocytes by T lymphocytes. Ann. N. Y. Acad. Sci. 2002, 966, 464–473. [Google Scholar] [CrossRef]
- Ferri, F.; Parcelier, A.; Petit, V.; Gallouet, A.S.; Lewandowski, D.; Dalloz, M.; van den Heuvel, A.; Kolovos, P.; Soler, E.; Squadrito, M.L.; et al. TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation. Nat. Commun. 2015, 6, 8900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minshall, E.; Chakir, J.; Laviolette, M.; Molet, S.; Zhu, Z.; Olivenstein, R.; Elias, J.A.; Hamid, Q. IL-11 expression is increased in severe asthma: Association with epithelial cells and eosinophils. J. Allergy Clin. Immunol. 2000, 105, 232–238. [Google Scholar] [CrossRef]
- Xie, S.; Chen, M.; Yan, B.; He, X.; Chen, X.; Li, D. Identification of a role for the PI3K/AKT/mTOR signaling pathway in innate immune cells. PLoS ONE 2014, 9, e94496. [Google Scholar] [CrossRef] [PubMed]
Particle Size (nm) | Specific Surface Area (m2/g) | Aerosol Mass Concentration (mg/m3) | Aerosol Number Concentration (Particle/cm3) | CMAD (nm) (ELPI) | MMAD (nm) (SIOUTAS) | Ti Lung Deposited Dose (mg/Lung) * |
---|---|---|---|---|---|---|
21.5 ± 7.2 | 51 | 10.17 ± 3.29 (young) | 24,000 ± 6400 | 269 (GSD: 2.22) | 905 (GSD: 2.19) | 2.08 ± 0.09 |
10.42 ± 1.80 (elderly) | 2.19 ± 0.40 |
Parameters | Time-Point | Young Rats | Elderly Rats | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | Exposed | Exposure Effect (p-Value and Fold Change) | Control | Exposed | Exposure Effect (p-Value and Fold Change) | |||||
Biometry | Body weight (g) | D0 | 296.0 [289.0; 302.3] | 278.5 [267.8; 288.5] | * | 0.94 | 364.0 [357.0; 380.5] | 358.0 [349.5; 360.5] | NS | 0.98 |
D28 | 341.1 [333.0; 345.4] | 352.7 [342.9; 359.4] | NS | 1.03 | 414.5 [384.5; 430.3] | 425.0 [394.5; 447.5] | NS | 1.03 | ||
Lung weight to body weight ratio | D0 | 0.0042 [0.0039; 0.0044] | 0.0053 [0.0051; 0.0056] | ** | 1.26 | 0.0049 [0.0046; 0.0051] | 0.0054 [0.0053; 0.0057] | * | 1.10 | |
D28 | 0.0049 [0.0046; 0.0052] | 0.0043 [0.0041; 0.0045] | ** | 0.88 | 0.0044 [0.0042; 0.0050] | 0.0045 [0.0044; 0.0048] | NS | 1.02 | ||
BALF cytology | Neutrophils percentage (%) | D0 | 1.60 [1.20; 2.00] | 51.0 [50.0; 57.0] | ** | 31.90 | 5.400 [3.700; 7.250] | 45.20 [36.80; 49.20] | ** | 8.37 |
D28 | 2.10 [1.95; 3.45] | 14.5 [11.2; 20.8] | * | 6.90 | 7.600 [5.000; 7.800] | 25.40 [19.20; 28.00] | ** | 3.34 | ||
Lymphocytes percentage (%) | D0 | 0.20 [0.20; 0.40] | 0.00 [0.00; 0.20] | NS | / | 0.600 [0.400; 1.100] | 4.200 [4.000; 4.800] | ** | 7.00 | |
D28 | 0.00 [0.00; 0.05] | 0.300 [0.20; 0.40] | NS | / | 0.000 [0.000; 0.000] | 0.800 [0.400; 1.200] | * | / |
Day 0 | Day 28 | |||||
---|---|---|---|---|---|---|
Total | ↘ | ↗ | Total | ↘ | ↗ | |
Common to both exposed groups | 230 | 35 | 195 | 90 | 23 | 67 |
Specific to young exposed rats | 342 | 138 | 204 | 38 | 14 | 24 |
Specific to elderly exposed rats | 382 | 227 | 155 | 382 | 120 | 262 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentino, S.A.; Chézeau, L.; Seidel, C.; Sébillaud, S.; Lorcin, M.; Chalansonnet, M.; Cosnier, F.; Gaté, L. Exposure to TiO2 Nanostructured Aerosol Induces Specific Gene Expression Profile Modifications in the Lungs of Young and Elderly Rats. Nanomaterials 2021, 11, 1466. https://doi.org/10.3390/nano11061466
Valentino SA, Chézeau L, Seidel C, Sébillaud S, Lorcin M, Chalansonnet M, Cosnier F, Gaté L. Exposure to TiO2 Nanostructured Aerosol Induces Specific Gene Expression Profile Modifications in the Lungs of Young and Elderly Rats. Nanomaterials. 2021; 11(6):1466. https://doi.org/10.3390/nano11061466
Chicago/Turabian StyleValentino, Sarah A., Laëtitia Chézeau, Carole Seidel, Sylvie Sébillaud, Mylène Lorcin, Monique Chalansonnet, Frédéric Cosnier, and Laurent Gaté. 2021. "Exposure to TiO2 Nanostructured Aerosol Induces Specific Gene Expression Profile Modifications in the Lungs of Young and Elderly Rats" Nanomaterials 11, no. 6: 1466. https://doi.org/10.3390/nano11061466
APA StyleValentino, S. A., Chézeau, L., Seidel, C., Sébillaud, S., Lorcin, M., Chalansonnet, M., Cosnier, F., & Gaté, L. (2021). Exposure to TiO2 Nanostructured Aerosol Induces Specific Gene Expression Profile Modifications in the Lungs of Young and Elderly Rats. Nanomaterials, 11(6), 1466. https://doi.org/10.3390/nano11061466