Simulated Gastric Digestion and In Vivo Intestinal Uptake of Orally Administered CuO Nanoparticles and TiO2 E171 in Male and Female Rat Pups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanomaterials and Chemicals
2.2. In Vitro Gastric Digestion
2.3. Nanoparticle Stability in Tissue Fixative Solutions
2.4. Nanoparticle Characterization
2.5. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) Analysis of Digested NPs
2.6. Nanoparticle In Vivo Dose Formulation
2.7. Housing and Dose Administration
2.8. Histology
2.9. Evaluation of NPs Present in Intestinal Tissues
2.10. Evaluation of Immune Cells Present in Intestinal Tissues
2.11. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Analysis of Tissues
2.12. Statistical Analysis
3. Results
3.1. In Vitro Gastric Digestion of Nanoparticles
3.2. Nanoparticle Stability in Tissue Fixative Solutions
3.3. Characterization of In Vivo Dose Solution
3.4. Body Weight (bw) and Organ-to-bw Ratio
3.5. Intestinal Uptake of Nanoparticles
3.6. Immune Cells in The Intestinal Tissue
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peters, R.J.B.; van Bemmel, G.; Herrera-Rivera, Z.; Helsper, H.P.F.G.; Marvin, H.J.P.; Weigel, S.; Tromp, P.C.; Oomen, A.G.; Rietveld, A.G.; Bouwmeester, H. Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles. J. Agric. Food Chem. 2014, 62, 6285–6293. [Google Scholar] [CrossRef]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; Von Goetz, N. Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Re-Evaluation of Titanium Dioxide (E 171) as a Food Additive. EFSA J. 2016, 14. [Google Scholar] [CrossRef]
- López-Vargas, E.R.; Ortega-Ortíz, H.; Cadenas-Pliego, G.; Romenus, K.D.A.; De La Fuente, M.C.; Benavides-Mendoza, A.; Juárez-Maldonado, A. Foliar Application of Copper Nanoparticles Increases the Fruit Quality and the Content of Bioactive Compounds in Tomatoes. Appl. Sci. 2018, 8, 1020. [Google Scholar] [CrossRef] [Green Version]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Huang, Y.; Mei, L.; Chen, X.; Wang, Q. Recent Developments in Food Packaging Based on Nanomaterials. Nanomaterials 2018, 8, 830. [Google Scholar] [CrossRef] [Green Version]
- Longano, D.; DiTaranto, N.; Cioffi, N.; Di Niso, F.; Sibillano, T.; Ancona, A.; Conte, A.; Del Nobile, M.A.; Sabbatini, L.; Torsi, L. Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal. Bioanal. Chem. 2012, 403, 1179–1186. [Google Scholar] [CrossRef]
- Delgado, K.; Quijada, R.; Palma, R.; Palza, H. Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett. Appl. Microbiol. 2011, 53, 50–54. [Google Scholar] [CrossRef]
- Gurunathan, S.; Zhang, X.-F.; Kim, J.-H. Effects of silver nanoparticles on neonatal testis development in mice. Int. J. Nanomed. 2015, 10, 6243–6256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rollerova, E.; Tulinska, J.; Liskova, A.; Kuricova, M.; Kovriznych, J.; Mlynarcikova, A.; Kiss, A.; Scsukova, S. Titanium dioxide nanoparticles: Some aspects of toxicity/focus on the development. Endocr. Regul. 2015, 49, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Zhang, Y.; Yun, Z.; Liu, Q.; Qu, G.; Zhou, Q.; Hu, L.; Jiang, G. Silver nanoparticle exposure induces rat motor dysfunction through decrease in expression of calcium channel protein in cerebellum. Toxicol. Lett. 2015, 237, 112–120. [Google Scholar] [CrossRef]
- Yin, N.; Yao, X.; Zhou, Q.; Faiola, F.; Jiang, G. Vitamin E attenuates silver nanoparticle-induced effects on body weight and neurotoxicity in rats. Biochem. Biophys. Res. Commun. 2015, 458, 405–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semmler-Behnke, M.; Kreyling, W.G.; Schulz, H.; Takenaka, S.; Butler, J.P.; Henry, F.S.; Tsuda, A. Nanoparticle delivery in infant lungs. Proc. Natl. Acad. Sci. USA 2012, 109, 5092–5097. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, N.P.; Caffaro, M.M.; Patel, P.R.; Snyder, R.W.; Watson, S.L.; Aravamudhan, S.; Montgomery, S.A.; Lefever, T.; Sumner, S.J.; Fennell, T.R. Biodistribution, cardiac and neurobehavioral assessments, and neurotransmitter quantification in juvenile rats following oral administration of aluminum oxide nanoparticles. J. Appl. Toxicol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lecce, J.G.; Broughton, C.W. Cessation of uptake of macromolecules by neonatal guinea pig, hamster and rabbit intestinal epithelium (closure) and transport into blood. J. Nutr. 1973, 103, 744–750. [Google Scholar] [CrossRef] [Green Version]
- Teichberg, S.; A Wapnir, R.; Moyse, J.; Lifshitz, F. Development of the Neonatal Rat Small Intestinal Barrier to Nonspecific Macromolecular Absorption. II. Role of Dietary Corticosterone. Pediatr. Res. 1992, 32, 50–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weström, B.; Svendsen, J.; Karlsson, B. Protease Inhibitor Levels in Porcine Mammary Secretions. Neonatology 1982, 42, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Weström, B.R.; Tagesson, C.; Leandersson, P.; Folkesson, H.G.; Svendsen, J. Decrease in intestinal permeability to polyethylene glycol 1000 during development in the pig. J. Dev. Physiol. 1989, 11, 83–87. [Google Scholar] [PubMed]
- A Drozdowski, L.; Clandinin, T.; Thomson, A.B.R. Ontogeny, growth and development of the small intestine: Understanding pediatric gastroenterology. World J. Gastroenterol. 2010, 16, 787–799. [Google Scholar]
- Picut, C.A.; Parker, G.A. Postnatal Organ Development as a Complicating Factor in Juvenile Toxicity Studies in Rats. Toxicol. Pathol. 2016, 45, 248–252. [Google Scholar] [CrossRef]
- Semple, B.D.; Blomgren, K.; Gimlin, K.; Ferriero, D.M.; Noble-Haeusslein, L.J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 2013, 106–107, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ingber, S.Z.; Pohl, H.R. Windows of sensitivity to toxic chemicals in the motor effects development. Regul. Toxicol. Pharmacol. 2016, 74, 93–104. [Google Scholar] [CrossRef] [Green Version]
- LeBuoton, A.V. Growth, Mitosis and Morphogenesis in Neonatal of the Simple Liver Acinus Rats. Devel. Biol. 1974, 41, 22–30. [Google Scholar] [CrossRef]
- De Juan, S.C.; Monte, M.J.; Macias, R.; Wauthier, V.; Calderon, P.B.; Marin, J.J.G. Ontogenic development-associated changes in the expression of genes involved in rat bile acid homeostasis. J. Lipid Res. 2007, 48, 1362–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greengard, O.; Federman, M.; Knox, W.E. Cytomorphometry of developing rat liver and its application to enzymic differentiation. J. Cell Biol. 1972, 52, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Parker, G.A.; Picut, C.A.; Swanson, C.; Toot, J.D. Histologic Features of Postnatal Development of Immune System Organs in the Sprague-Dawley Rat. Toxicol. Pathol. 2015, 43, 794–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holladay, S.D.; Smialowicz, R.J. Development of the murine and human immune system: Differential effects of immunotoxicants depend on time of exposure. Environ. Health Perspect. 2000, 108 (Suppl. 3), 463–473. [Google Scholar]
- Abdelkhaliq, A.; Van Der Zande, M.; Undas, A.K.; Peters, R.J.B.; Bouwmeester, H. Impact of in vitro digestion on gastrointestinal fate and uptake of silver nanoparticles with different surface modifications. Nanotoxicology 2019, 14, 111–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, R.; Kramer, E.; Oomen, A.G.; Rivera, Z.E.H.; Oegema, G.; Tromp, P.C.; Fokkink, R.; Rietveld, A.; Marvin, H.J.P.; Weigel, S.; et al. Presence of Nano-Sized Silica duringIn VitroDigestion of Foods Containing Silica as a Food Additive. ACS Nano 2012, 6, 2441–2451. [Google Scholar] [CrossRef]
- Bettencourt, A.; Gonçalves, L.M.; Gramacho, A.C.; Vieira, A.; Rolo, D.; Martins, C.; Assunção, R.; Alvito, P.; Silva, M.J.; Louro, H. Analysis of the Characteristics and Cytotoxicity of Titanium Dioxide Nanomaterials Following Simulated In Vitro Digestion. Nanomater. 2020, 10, 1516. [Google Scholar] [CrossRef]
- Voss, L.; Saloga, P.E.J.; Stock, V.; Böhmert, L.; Braeuning, A.; Thünemann, A.F.; Lampen, A.; Sieg, H. Environmental Impact of ZnO Nanoparticles Evaluated by in Vitro Simulated Digestion. ACS Appl. Nano Mater. 2019, 3, 724–733. [Google Scholar]
- DeLoid, G.M.; Wang, Y.; Kapronezai, K.; Lorente, L.R.; Zhang, R.; Pyrgiotakis, G.; Konduru, N.V.; Ericsson, M.; White, J.C.; De La Torre-Roche, R.; et al. An integrated methodology for assessing the impact of food matrix and gastrointestinal effects on the biokinetics and cellular toxicity of ingested engineered nanomaterials. Part. Fibre Toxicol. 2017, 14, 1–17. [Google Scholar] [CrossRef]
- Walczak, A.P.; Fokkink, R.; Peters, R.; Tromp, P.; Herrera Rivera, Z.E.; Rietjens, I.M.C.M.; Hendriksen, P.J.M.; Bouwmeester, H. Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model. Nanotoxicology 2013, 7, 1198–1210. [Google Scholar] [CrossRef]
- Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Helsdingen, R.; van der Zande, M.; Rietjens, I.M.C.M.; Bouwmeester, H. In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model. Nanotoxicology 2015, 9, 886–894. [Google Scholar] [CrossRef]
- Lichtenstein, D.; Ebmeyer, J.; Knappe, P.; Juling, S.; Böhmert, L.; Selve, S.; Niemann, B.; Braeuning, A.; Thünemann, A.F.; Lampen, A. Impact of food components during in vitro digestion of silver nanoparticles on cellular uptake and cytotoxicity in intestinal cells. Biol. Chem. 2015, 396, 1255–1264. [Google Scholar] [CrossRef]
- Kim, J.-C.; Lee, I.-C.; Ko, J.-W.; Park, S.-H.; Lim, J.-O.; Shin, I.-S.; Moon, C.; Kim, S.-H.; Her, J.-D. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int. J. Nanomed. 2016, 11, 2883–2900. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wu, X.; Chen, X.D. Comparison between the digestive behaviors of a new in vitro rat soft stomach model with that of the in vivo experimentation on living rats—Motility and morphological influences. J. Food Eng. 2013, 117, 183–192. [Google Scholar] [CrossRef]
- Wu, P.; Bhattarai, R.R.; Dhital, S.; Deng, R.; Chen, X.D.; Gidley, M.J. In vitro digestion of pectin- and mango-enriched diets using a dynamic rat stomach-duodenum model. J. Food Eng. 2017, 202, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Deng, R.; Wu, X.; Wang, Y.; Dong, Z.; Dhital, S.; Chen, X.D. In vitro gastric digestion of cooked white and brown rice using a dynamic rat stomach model. Food Chem. 2017, 237, 1065–1072. [Google Scholar] [CrossRef] [Green Version]
- Arvola, T.; Rantala, I.; Marttinen, A.; Isolauri, E. Early Dietary Antigens Delay the Development of Gut Mucosal Barrier in Preweaning Rats. Pediatr. Res. 1992, 32, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Weström, B.; Sureda, E.A.; Pierzynowska, K.; Pierzynowski, S.G.; Pérez-Cano, F.-J. The Immature Gut Barrier and Its Importance in Establishing Immunity in Newborn Mammals. Front. Immunol. 2020, 11, 1153. [Google Scholar] [CrossRef]
- Cohen, J.M.; Beltran-Huarac, J.; Pyrgiotakis, G.; Demokritou, P. Effective delivery of sonication energy to fast settling and agglomerating nanomaterial suspensions for cellular studies: Implications for stability, particle kinetics, dosimetry and toxicity. NanoImpact 2018, 10, 81–86. [Google Scholar] [CrossRef]
- DeLoid, G.M.; Cohen, J.M.; Pyrgiotakis, G.; Demokritou, P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat. Protoc. 2017, 12, 355–371. [Google Scholar] [CrossRef]
- NRC. Guide for the Care and Use of Laboratory Animals. 2011, Institute for Laboratory Animal Research; The National Academy Press: Washington, DC, USA, 2011. [Google Scholar]
- Johansson, M.E.V.; Hansson, G.C. Preservation of Mucus in Histological Sections, Immunostaining of Mucins in Fixed Tissue, and Localization of Bacteria with FISH. Methods Mol. Biol. 2012, 842, 229–235. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353.e21. [Google Scholar] [CrossRef] [Green Version]
- Bialkowska, A.B.; Ghaleb, A.M.; Nandan, M.O.; Yang, V.W. Improved Swiss-rolling Technique for Intestinal Tissue Preparation for Immunohistochemical and Immunofluorescent Analyses. J. Vis. Exp. 2016, 2016, e54161. [Google Scholar] [CrossRef]
- Holian, A.; Hamilton, R.F.; Wu, Z.; Deb, S.; Trout, K.L.; Wang, Z.; Bhargava, R.; Mitra, S. Lung deposition patterns of MWCNT vary with degree of carboxylation. Nanotoxicology 2019, 13, 143–159. [Google Scholar] [CrossRef]
- Versantvoort, C.H.; Oomen, A.G.; Van de Kamp, E.; Rompelberg, C.J.; Sips, A.J. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem. Toxicol. 2005, 43, 31–40. [Google Scholar] [CrossRef]
- Bove, P.; Malvindi, M.A.; Sabella, S. In vitro human digestion test to monitor the dissolution of silver nanoparticles. J. Phys. Conf. Ser. 2017, 838, 012003. [Google Scholar] [CrossRef]
- Gärtner, K. The forestomach of rats and mice, an effective device supporting digestive metabolism in muridae (review). J. Exp. Anim. Sci. 2002, 42, 1–20. [Google Scholar] [CrossRef]
- Schulze, K. Imaging and modelling of digestion in the stomach and the duodenum. Neurogastroenterol. Motil. 2006, 18, 172–183. [Google Scholar] [CrossRef]
- Cholewińska, E.; Ognik, K.; Fotschki, B.; Zduńczyk, Z.; Juśkiewicz, J. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS ONE 2018, 13, e0197083. [Google Scholar] [CrossRef] [Green Version]
- De Jong, W.H.; De Rijk, E.; Bonetto, A.; Wohlleben, W.; Stone, V.; Brunelli, A.; Badetti, E.; Marcomini, A.; Gosens, I.; Cassee, F.R. Toxicity of copper oxide and basic copper carbonate nanoparticles after short-term oral exposure in rats. Nanotoxicology 2018, 13, 50–72. [Google Scholar] [CrossRef]
- Lee, I.-C.; Ko, J.-W.; Park, S.-H.; Shin, N.-R.; Shin, I.-S.; Moon, C.; Kim, J.-H.; Kim, H.-C.; Kim, J.-C. Comparative toxicity and biodistribution assessments in rats following subchronic oral exposure to copper nanoparticles and microparticles. Part. Fibre Toxicol. 2016, 13, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talamini, L.; Gimondi, S.; Violatto, M.B.; Fiordaliso, F.; Pedica, F.; Tran, N.L.; Sitia, G.; Aureli, F.; Raggi, A.; Nelissen, I.; et al. Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status. Nanotoxicology 2019, 13, 1087–1101. [Google Scholar] [CrossRef] [PubMed]
- Bettini, S.; Boutet-Robinet, E.; Cartier, C.; Coméra, C.; Gaultier, E.; Dupuy, J.; Naud, N.; Taché, S.; Grysan, P.; Reguer, S.; et al. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci. Rep. 2017, 7, srep40373. [Google Scholar] [CrossRef] [PubMed]
- Coméra, C.; Cartier, C.; Gaultier, E.; Catrice, O.; Panouille, Q.; El Hamdi, S.; Tirez, K.; Nelissen, I.; Théodorou, V.; Houdeau, E. Jejunal villus absorption and paracellular tight junction permeability are major routes for early intestinal uptake of food-grade TiO2 particles: An in vivo and ex vivo study in mice. Part. Fibre Toxicol. 2020, 17, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, S.; Lei, R.; Gu, W.; Qin, Y.; Ma, S.; Chen, K.; Chang, Y.; Bai, X.; Xia, S.; et al. Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure. Nanoscale 2018, 10, 7736–7745. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Z.; Ba, T.; Pu, J.; Chen, T.; Song, Y.; Gu, Y.; Qian, Q.; Xu, Y.; Xiang, K.; et al. Susceptibility of Young and Adult Rats to the Oral Toxicity of Titanium Dioxide Nanoparticles. Small 2013, 9, 1742–1752. [Google Scholar] [CrossRef]
- Cho, W.-S.; Kang, B.-C.; Lee, J.K.; Jeong, J.; Che, J.-H.; Seok, S.H. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part. Fibre Toxicol. 2013, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zheng, P.; Han, S.; Zhang, J.; Li, Z.; Zhou, S.; Jia, G. Tissue-specific oxidative stress and element distribution after oral exposure to titanium dioxide nanoparticles in rats. Nanoscale 2020, 12, 20033–20046. [Google Scholar] [CrossRef]
- Janer, G.; del Molino, E.M.; Fernández-Rosas, E.; Fernández, A.; Vázquez-Campos, S. Cell uptake and oral absorption of titanium dioxide nanoparticles. Toxicol. Lett. 2014, 228, 103–110. [Google Scholar] [CrossRef]
- Cheroutre, H.; Lambolez, F.; Mucida, D. The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 2011, 11, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Cukrowska, B.; Sowińska, A.; Bierła, J.B.; Czarnowska, E.; Rybak, A.; Grzybowska-Chlebowczyk, U. Intestinal epithelium, intraepithelial lymphocytes and the gut microbiota—Key players in the pathogenesis of celiac disease. World J. Gastroenterol. 2017, 23, 7505–7518. [Google Scholar] [CrossRef]
- Levine, A.P.; Segal, A.W. What Is Wrong with Granulocytes in Inflammatory Bowel Diseases? Dig. Dis. 2013, 31, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Loktionov, A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J. Gastroenterol. 2019, 25, 3503–3526. [Google Scholar] [CrossRef]
- Fournier, B.; A Parkos, C. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 2012, 5, 354–366. [Google Scholar] [CrossRef]
- Ammendolia, M.G.; Iosi, F.; Maranghi, F.; Tassinari, R.; Cubadda, F.; Aureli, F.; Raggi, A.; Superti, F.; Mantovani, A.; De Berardis, B. Short-term oral exposure to low doses of nano-sized TiO2 and potential modulatory effects on intestinal cells. Food Chem. Toxicol. 2017, 102, 63–75. [Google Scholar] [CrossRef]
Gastric Phase | Bland | Transitional | Acidic |
---|---|---|---|
Age | ~PND 7 | ~PND 14 | ~PND 21 |
pH | 7.0 | 6.0 | 4.0 |
Chemical Formulation | 0.315 g/L NaHCO3 | 0.13 g/L Pepsin (from porcine gastric mucosa) | 0.27 g/L Pepsin (from porcine gastric mucosa) |
8.78 g/L NaCl | 1.5 g/l Mucin | 1.5 g/l Mucin | |
Hydrochloric acid | Hydrochloric acid | ||
0.315 g/L NaHCO3 | 0.315 g/L NaHCO3 | ||
8.78 g/L NaCl | 8.78 g/L NaCl | ||
Incubation Time | 1, 2, and 4 h | 1, 2, and 4 h | 1, 2, and 4 h |
DLS a | ICP-OES b | |||||
---|---|---|---|---|---|---|
Gastric Phase (Age) | Solution | Inc. Time (h) | CuO NP Diameter [nm], Average ± std. (PdI) | TiO2 E171 Diameter [nm], Average ± std. (PdI) | CuO NP %Cu Digested in Filtrate | TiO2 E171 %Ti Digested in Filtrate |
Control | DI water | NA c | 441 ± 68.2 (0.37) | 322 ± 38.3 (0.24) | ND d | ND |
Bland Phase (~PND 7) | Gastric fluid, pH 7 | 1 | 348 ± 52.1 (0.47) | 1207 ± 139 (0.82) | ND | ND |
2 | 1151 ± 149 (0.64) | 1292 ± 144 (0.96) | ND | ND | ||
4 | 2044 ± 484 (0.92) | 1987 ± 341 (1.0) | 3.49 ± 1.77 | ND | ||
Transitional Phase (~PND 14) | Gastric fluid, pH 6 | 1 | 1237 ± 103 (0.66) | 1122 ± 81.4 (0.68) | ND | ND |
2 | 1151 ± 96.5 (0.74) | 1280 ± 127 (0.79) | 4.86 ± 1.81 | ND | ||
4 | 1813 ± 41.0 (0.96) | 1377 ± 179 (0.88) | 17.4 ± 4.53 | ND | ||
Acidic Phase (~ PND 21) | Gastric fluid, pH 4 | 1 | 841 ± 15.2 (0.62) | 779 ± 56.8 (0.68) | 24.7 ± 3.92 | ND |
2 | 679 ± 62.6 (0.81) | 821 ± 103 (0.70) | 52.6 ± 4.62 | ND | ||
4 | 1365 ± 39.0 (0.75) | 1448 ± 224 (0.69) | 78.2 ± 5.85 | ND |
Duodenum b | Colon b | |
---|---|---|
IEL a | Gender: F(1,9) = 0, p > 0.9999 | Gender: F(1,5) = 0.4, p = 0.5549 |
Dose group: F(2,18) = 10.62, p = 0.0009 *** c | Dose group: F(2,10) = 0.05714, p = 0.9448 | |
Gender x Dose group: F(2,18) = 2.648, p = 0.0981 | Gender x Dose group: F(2,10) = 0.8235, p = 0.4666 | |
Gender: F(1,9) = 1727, p = 0.2213 | Gender: F(1,5) = 1.969, p = 0.2196 | |
Granulocytes | Dose group: F(2,18) = 17.92, p < 0.0001 *** c | Dose group: F(2,10) = 5.317, p = 0.0267 * c |
Gender x Dose group: F(2,18) = 1.863, p = 0.1840 | Gender x Dose group: F(2,10) = 0.5512, p = 0.5928 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortensen, N.P.; Moreno Caffaro, M.; Aravamudhan, S.; Beeravalli, L.; Prattipati, S.; Snyder, R.W.; Watson, S.L.; Patel, P.R.; Weber, F.X.; Montgomery, S.A.; et al. Simulated Gastric Digestion and In Vivo Intestinal Uptake of Orally Administered CuO Nanoparticles and TiO2 E171 in Male and Female Rat Pups. Nanomaterials 2021, 11, 1487. https://doi.org/10.3390/nano11061487
Mortensen NP, Moreno Caffaro M, Aravamudhan S, Beeravalli L, Prattipati S, Snyder RW, Watson SL, Patel PR, Weber FX, Montgomery SA, et al. Simulated Gastric Digestion and In Vivo Intestinal Uptake of Orally Administered CuO Nanoparticles and TiO2 E171 in Male and Female Rat Pups. Nanomaterials. 2021; 11(6):1487. https://doi.org/10.3390/nano11061487
Chicago/Turabian StyleMortensen, Ninell P., Maria Moreno Caffaro, Shyam Aravamudhan, Lakshmi Beeravalli, Sharmista Prattipati, Rodney W. Snyder, Scott L. Watson, Purvi R. Patel, Frank X. Weber, Stephanie A. Montgomery, and et al. 2021. "Simulated Gastric Digestion and In Vivo Intestinal Uptake of Orally Administered CuO Nanoparticles and TiO2 E171 in Male and Female Rat Pups" Nanomaterials 11, no. 6: 1487. https://doi.org/10.3390/nano11061487
APA StyleMortensen, N. P., Moreno Caffaro, M., Aravamudhan, S., Beeravalli, L., Prattipati, S., Snyder, R. W., Watson, S. L., Patel, P. R., Weber, F. X., Montgomery, S. A., Sumner, S. J., & Fennell, T. R. (2021). Simulated Gastric Digestion and In Vivo Intestinal Uptake of Orally Administered CuO Nanoparticles and TiO2 E171 in Male and Female Rat Pups. Nanomaterials, 11(6), 1487. https://doi.org/10.3390/nano11061487