Fabrication of Reusable Carboxymethyl Cellulose/Graphene Oxide Composite Aerogel with Large Surface Area for Adsorption of Methylene Blue
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Synthesis of Graphene Oxide (GO) Aerogel
2.3. Synthesis of Carboxymethyl Cellulose/Graphene Oxide (CMC/GO) Composite Aerogel
2.4. Material Characterizations
2.5. Adsorption Characterization
3. Results and Discussion
3.1. Characterization Results
3.2. Adsorption Performance of MB on CMC/GO and GO Aerogels
3.3. Effect of Adsorption Performance
3.4. Desorption and Cycling Tests
4. Mechanism Analysis of CMC/GO Composite Aerogel
4.1. Isothermal Adsorption Model
4.2. Adsorption Kinetics
4.3. Adsorption Thermodynamics
4.4. Adsorption Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Co | MB concentration at 0 time, mg·L−1 |
Ct | MB concentration at t time, mg·L−1 |
qe | adsorption capacity at adsorption equilibrium, mg·g−1 |
qt | adsorption capacity at time t, mg·g−1 |
t | adsorption time, min |
k1 | first-order adsorption kinetic constant, min−1 |
k2 | first-order adsorption kinetic constant, min−1 |
Ce | equilibrium mass concentration of the dye solution, mg·L−1 |
qe | equilibrium adsorption capacity, mg·g−1 |
qmax | monolayer saturated adsorption capacity, mg·g−1 |
kL | Langmuir constant,/L·mg−1 |
References
- Silva, L.S.; Lima, L.C.B.; Silva, F.C.; Matos, J.M.E.; Santos, M.R.M.C.; Santos Júnior, L.S.; Sousa, K.S.; Silva Filho, E.C. Dye anionic sorption in aqueous solution onto a cellulose surface chemically modified with aminoethanethiol. Chem. Eng. J. 2016, 218, 89–98. [Google Scholar] [CrossRef]
- Ruan, C.; Strømme, M.; Lindh, J. Preparation of porous 2,3-dialdehyde cellulose beads crosslinked withchitosan and their application in adsorption of Congo red dye. Carbohydr. Polym. 2018, 181, 200–207. [Google Scholar] [CrossRef]
- Zhou, Y.; Min, Y.; Qiao, H.; Huang, Q.; Wang, E.; Ma, T. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride. Int. J. Biol. Macromol. 2015, 74, 271–277. [Google Scholar] [CrossRef]
- Jiang, F.; Dinh, D.M.; Hsieh, Y. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels. Carbohydr. Polym. 2017, 173, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.L.; Li, C.; Liu, A.; Zhang, F.; You, F.; Yao, C. The synthesis and characterization of ytterbium-doped TiO2 hollow spheres with enhanced visible-light photocatalytic activity. RSC. Adv. 2017, 7, 24598–24606. [Google Scholar] [CrossRef] [Green Version]
- Elkady, M.; Shokry, H.; El-Sharkawy, A.; El-Subruiti, G.; Hamad, H. New insights into the activity of green supported nanoscale zero-valent iron composites for enhanced acid blue-25 dye synergistic decolorization from aqueous medium. J. Mol. Liq. 2019, 294, 111628. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, C.; Liu, N.; Teng, Y.; Yin, C. Preparation of transparent anti-pollution cellulose carbamate regenerated cellulose membrane with high separation ability. Int. J. Biol. Macromol. 2019, 139, 332–341. [Google Scholar] [CrossRef]
- Jiang, X.L.; Gao, Y.R.; Li, C.; You, F.; Yao, J.; Ji, Y.; Zhang, Y.; Yao, C. Preparation of hollow yttrium-doped TiO2 microspheres with enhanced visible-light photocatalytic activity. Mater. Res. Express 2019, 6, 065510. [Google Scholar] [CrossRef]
- Yue, X.; Chen, H.; Zhang, T.; Qiu, Z.; Qiu, F.; Yang, D. Controllable fabrication of tendril inspired hierarchical hybrid membrane for efficient recovering tellurium from photovoltaic waste. J. Clean. Prod. 2019, 230, 966–973. [Google Scholar] [CrossRef]
- Sallam, S.A.; El-Subruiti, G.M.; Eltaweil, A.S. Facile synthesis of Ag-γ-Fe2O3 superior nano-composite for catalytic reduction of nitroaromatic compounds and catalytic degradation of methyl orange. Catal Lett. 2018, 148, 3701–3714. [Google Scholar] [CrossRef]
- Shao, H.; Shao, S.; Wang, H.; Cheng, H. Experimental Study on the Treatment of Acid Scarlet Wastewater with Modified Bentonite. Sci. Technol. Rev. 2009, 27, 89–92. [Google Scholar]
- Wu, T.; Chen, M.; Zhang, L.; Xu, X.; Liu, Y.; Yan, J.; Wang, W.; Gao, J. Three-dimensional graphene-based aerogels prepared by a self-assembly process and its excellent catalytic and absorbing performance. J. Mater. Chem. A 2013, 1, 7612–7621. [Google Scholar] [CrossRef]
- Zhang, X.P.; Liu, D.; Yang, L.; Zhou, L.M.; You, T.Y. Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis. J. Mater. Chem. A 2015, 3, 10031–10037. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, S.; Yilihamu, A.; Ma, Q.; Shi, M.; Ouyang, B.; Zhang, Q.; Guan, X.; Yang, S. Adsorptive decontamination of Cu2+-contaminated water and soil by carboxylated graphene oxide/chitosan/cellulose composite beads. Environ. Res. 2019, 179, 108779. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yang, X.R.; Yan, Y.Y.; Chen, D.J.; Huang, L.H.; Zhang, J.X.; Ke, Y.; Tan, S.Z. The utilization of a three-dimensional reduced graphene oxide and montmorillonite composite aerogel as a multifunctional agent for wastewater treatment. RSC Adv. 2018, 8, 4239–4248. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zhu, X.Y.; Chen, B.L. Stable graphene oxide/poly (ethyleneimine) 3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water. Chem. Eng. J. 2018, 334, 1119–1127. [Google Scholar] [CrossRef]
- Ge, X.; Shan, Y.; Wu, L.; Mu, X.; Peng, H.; Jiang, Y. High-strength and morphology-controlled aerogel based on carboxymethyl cellulose and graphene oxide. Carbohydr. Polym. 2018, 197, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Wang, X.; Sun, Z.; Ma, J.; Wu, T.; Xing, F.; Gao, J. Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption. Carbohydr. Polym. 2014, 101, 392–400. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, J.; Liang, Y.; Liang, Y.; Chen, X.S.; Li, Y. Synthesis of magnetic carboxymethyl cellulose/graphene oxide nanocomposites for adsorption of copper from aqueous solution. Int. J. Energy Res. 2020, 45, 1–11. [Google Scholar] [CrossRef]
- Jiang, X.L.; Wang, Z.-J.; Deng, Q.; Zhang, F.; You, F.; Yao, C. Preparation and Electrochemical Properties of Zinc-Doped Nickel Oxide Hollow Microspheres with Hydrothermal Method. Eur. J. Inorg. Chem. 2018, 39, 4345–4348. [Google Scholar] [CrossRef]
- Jiang, X.L.; Zhang, J.; Yu, L.; Chen, R.; Xu, X. Synthesis of mono-dispersed ceria hollow nanospheres by a hydrothermal method. Micro Nano Lett. 2016, 11, 137–141. [Google Scholar] [CrossRef]
- Jiang, X.L.; Yu, L.; Yao, C.; You, F.; Zhang, J. Facile Fabrication and Characterization of Ytterbium Oxide Hollow Spheres using Carbon Spheres as Template. NANO 2016, 11, 1650067. [Google Scholar] [CrossRef]
- Yue, X.; Zhang, T.; Yang, D.; Qiu, F.; Li, Z. Hybrid aerogels derived from banana peel and waste paper for efficient oil absorption and emulsion separation. J. Clean. Prod. 2018, 199, 411–419. [Google Scholar] [CrossRef]
- Xu, Q.; Zeng, M.; Feng, Z.; Yin, D.; Huang, Y.; Chen, Y.; Yan, C.; Li, R.; Gu, Y. Understanding the effects of carboxylated groups of functionalized graphene oxide on the curing behavior and intermolecular interactions of benzoxazine nanocomposites. RSC Adv. 2016, 6, 31484–31496. [Google Scholar] [CrossRef]
- Zhang, C.; Li, P.; Huang, W.; Cao, B. Selective adsorption and separation of organic dyes in aqueous solutions by hydrolyzed PIM-1 microfibers. Chem. Eng. Res. Des. 2016, 109, 76–85. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Soleymani, M.; Sabzi, M.; Azimi, H.; Atlasi, Z. Novel magnetic polyvinyl alcohol/laponite RD nanocomposite hydrogels for efficient removal of methylene blue. J. Environ. Chem. Eng. 2017, 5, 2617–2630. [Google Scholar] [CrossRef]
- Zhu, L.; Guan, C.; Zhou, B.; Zhang, Z.; Yang, R.; Tang, Y.; Yang, J. Adsorption of Dyes onto Sodium Alginate Graf Poly (Acrylic Acid-co-2-Acrylamide-2-Methyl Propane Sulfonic Acid)/Kaolin Hydrogel Composite. Polym Polym Compos. 2017, 25, 627–634. [Google Scholar]
- Silva, J.M.; Ribeiro, L.S.; Orfao, J.J.M.; Soria, M.A.; Madeira, L.M. Low temperature glycerol steam reforming over a Rh-based catalyst combined with oxidative regeneration. Int. J. Hydrog. Energy 2019, 44, 2461–2473. [Google Scholar] [CrossRef]
- Sharif, F.; Gagnon, L.R.; Mulmi, S.; Roberts, E.P.L. Electrochemical regeneration of a reduced graphene oxide/magnetite composite adsorbent loaded with methylene blue. Water Res. 2017, 114, 237–245. [Google Scholar] [CrossRef]
- Li, H.; Deng, B. Several Regeneration Methods of Activated Carbon. Technol. Dev. Chem. Ind. 2006, 11, 21–24. [Google Scholar]
- Dai, H.; Huang, Y.; Huang, H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydr. Polym. 2018, 185, 1–11. [Google Scholar] [CrossRef]
- Zhang, T.; Kong, L.; Dai, Y.; Yue, X.; Rong, J.; Qiu, F.; Pan, J. Enhanced oils and organic solvents absorption by polyurethane foams composites modified with MnO2 nanowires. Chem. Eng. J. 2016, 309, 7–14. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, Y.; Shen, L.; Wang, X.; Chen, J.; Ma, A.; Jiang, W. Lead(II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chem. Eng. J. 2015, 268, 348–355. [Google Scholar] [CrossRef]
- Gong, G.; Zhang, F.; Cheng, Z.; Zhou, L. Facile fabrication of magnetic car-boxymethyl starch/poly (vinyl alcohol) composite gel for methylene blue removal. Int. J. Biol. Macromol. 2015, 81, 205–211. [Google Scholar] [CrossRef]
- Eltaweil, A.S.; Elgarhy, G.S.; El-Subruiti, G.M.; Omer, A.M. Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads for efficient adsorption of cationic methylene blue dye. Int. J. Biol. Macromol. 2020, 154, 307–318. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freunidlich, H.M.F. Over the adsorption in solution. JCP 1906, 57, 385–471. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Zhu, W.; Jiang, X.L.; Liu, F.; You, F.; Yao, C. Preparation of Chitosan-Graphene Oxide Composite Aerogel by Hydrothermal Method and Its Adsorption Property of Methyl Orange. Polymers 2020, 12, 2169. [Google Scholar] [CrossRef]
- Yang, Q.; Lu, R.; Ren, S.; Chen, C.; Chen, Z.; Yang, X. Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water. Chem. Eng. J. 2018, 348, 202–211. [Google Scholar] [CrossRef]
- Huang, T.; Shao, Y.; Zhang, Q.; Deng, Y.; Liang, Z.; Guo, F.; Li, P.; Wang, Y. Chitosan-Cross-Linked Graphene Oxide/Carboxymethyl Cellulose Aerogel Globules with High Structure Stability in Liquid and Extremely High Adsorption Ability. ACS Sustain. Chem. Eng. 2019, 7, 8775–8788. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, Y.; Ma, L.; Zhang, H.; Hung, H. Synthesis and response of pineapple peel carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide) /graphene oxide hydrogels. Carbohydr. Polym. 2019, 215, 366–376. [Google Scholar] [CrossRef]
- Hernandez-Martínez, A.R.; Lujan-Montelongo, J.A.; Silva-Cuevas, C.; Mota-Morales, J.D.; Cortez-Valadez, M.; Ruíz-Baltazar, A.J.; Cruz, N.; Herrera-Ordonez, J. Swelling and methylene blue adsorption of poly (N, N-dimethylacrylamide-co-2-hydroxyethyl methacrylate) hydrogel. React Funct Polym. 2018, 122, 75–84. [Google Scholar] [CrossRef]
- Dai, H.; Huang, H. Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose 2017, 24, 69–84. [Google Scholar] [CrossRef]
- Dai, H.; Huang, H. Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue. Carbohydr. Polym. 2016, 148, 1–10. [Google Scholar] [CrossRef]
- Sharma, R.; Kalia, S.; Kaith, B.S.; Pathania, D.; Kumar, A.; Thakur, P. Guaran-based biodegradable and conducting interpenetrating polymer network composite hydrogels for adsorptive removal of methylene blue dye. Polym. Degrad. Stabil. 2015, 2122, 52–65. [Google Scholar] [CrossRef]
Sample | BET (m2·g−1) | Pore Volume (cm3·g−1) | Pore Diameter (nm) |
---|---|---|---|
GO | 65.01 | 0.70 | 34.09 |
CMC/GO | 800.85 | 0.45 | 30.13 |
Adsorbents | Cycle Number | Last Adsorption Capacity/First Adsorption Capacity | References | Date |
---|---|---|---|---|
PVA-based nanocomposite hydrogels | 4 | 93% | [26] | 2017 |
PVA/PCMC/GO/bentonite | 4 | 92.39% | [31] | 2018 |
MnO2 nanowires/PU foam composites | 5 | 91.9% | [32] | 2016 |
Starch-humic acid composite hydrogel beads | 5 | 97% | [33] | 2015 |
Magnetic carboxymethyl starch/poly(vinyl alcohol)composite gel | 8 | 85% | [34] | 2015 |
Novel carboxymethyl cellulose/carboxylated graphene oxide composite microbeads | 9 | 90% | [35] | 2020 |
CMC/GO composite aerogel | 9 | 92.66% | This work | 2021 |
T(K) | lnKd | ΔGӨ(KJ·moL−1) | ΔHӨ(KJ·moL−1) | ΔSӨ(KJ·moL−1·K−1) |
---|---|---|---|---|
288.15 | 1.717 | −4.675 | 10.718 | 0.0516 |
298.15 | 1.83 | |||
308.15 | 2.01 |
Adsorbents | Maximum Adsorption Capacity (mg·g−1) | References | Date |
---|---|---|---|
Carboxymethyl cellulose/carboxylated graphene oxide composite microbeads | 180.23 | [35] | 2020 |
Pineapple peel carboxy methylcellulose-g-poly (acryliccid-co-acrylamide)/graphene oxide hydrogels | 133.32 | [42] | 2019 |
Polyvinyl alcohol/carboxymethyl cellulose hydrogels | 172.14 | [31] | 2018 |
Poly(N,N-dimethylacrylamide-co-2-hydroxyethyl methacrylate) hydrogel | 80.27 | [43] | 2018 |
Pineapple peel cellulose-g-acrylic acid/kaolin/sepia ink hydrogels | 153.85 | [44] | 2017 |
Modified pineapple peel cellulose hydrogels embedded with sepia ink | 138.25 | [45] | 2016 |
Starch-humic acid composite hydrogel | 110.00 | [33] | 2015 |
Guaran/poly(itaconic acid) hydrogel | 106.04 | [46] | 2015 |
Magnetic starch/poly(vinyl alcohol) composite hydrogel | 23.53 | [34] | 2015 |
CMC/GO composite aerogel | 246.42 | This study | 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Jiang, X.; Jiang, K.; Liu, F.; You, F.; Yao, C. Fabrication of Reusable Carboxymethyl Cellulose/Graphene Oxide Composite Aerogel with Large Surface Area for Adsorption of Methylene Blue. Nanomaterials 2021, 11, 1609. https://doi.org/10.3390/nano11061609
Zhu W, Jiang X, Jiang K, Liu F, You F, Yao C. Fabrication of Reusable Carboxymethyl Cellulose/Graphene Oxide Composite Aerogel with Large Surface Area for Adsorption of Methylene Blue. Nanomaterials. 2021; 11(6):1609. https://doi.org/10.3390/nano11061609
Chicago/Turabian StyleZhu, Wei, Xueliang Jiang, Kun Jiang, Fangjun Liu, Feng You, and Chu Yao. 2021. "Fabrication of Reusable Carboxymethyl Cellulose/Graphene Oxide Composite Aerogel with Large Surface Area for Adsorption of Methylene Blue" Nanomaterials 11, no. 6: 1609. https://doi.org/10.3390/nano11061609
APA StyleZhu, W., Jiang, X., Jiang, K., Liu, F., You, F., & Yao, C. (2021). Fabrication of Reusable Carboxymethyl Cellulose/Graphene Oxide Composite Aerogel with Large Surface Area for Adsorption of Methylene Blue. Nanomaterials, 11(6), 1609. https://doi.org/10.3390/nano11061609