Optimization of the Electrospun Niobium–Tungsten Oxide Nanofibers Diameter Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Experiment
2.2. Preparation of the Precursor Solution
2.3. Electrospinning of Nanofibers
2.4. Measurement of the Nanofibers Diameter
2.5. Development of the CCD Response Surface Model
3. Results and Discussions
3.1. Estimation of Coefficients in the Mathematical Model Equation
3.2. Verification of the Response Surface Model
3.3. Visualization of the Interactions Between the Model Parameters
3.4. Optimization and Validation of the Response Surface Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weber, J.; Singhai, R.; Zekri, S.; Kumar, A. One-dimensional nanostructures: Fabrication, characterization and applications. Int. Mater. Rev. 2008, 53, 235–255. [Google Scholar] [CrossRef]
- Wei, Q.; Xiong, F.; Tan, S.; Huang, L.; Lan, E.H.; Dunn, B.; Mai, L. Porous one-dimensional nanomaterials: Design, fabrication and applications in electrochemical energy storage. Adv. Mater. 2017, 29, 1602300. [Google Scholar] [CrossRef]
- Barakat, N.A.M.; Kim, B.; Kim, H.Y. Production of smooth and pure nickel metal nanofibers by the electrospinning technique: Nanofibers possess splendid magnetic properties. J. Phys. Chem. C 2009, 113, 531–536. [Google Scholar] [CrossRef]
- Lin, C.; Lai, M.O.; Lu, L.; Zhou, H.; Xin, Y. Structure and high rate performance of Ni2+ doped Li 4Ti5O12 for lithium-ion battery. J. Power Sources 2013, 244, 272–279. [Google Scholar] [CrossRef]
- Lim, S.K.; Lee, S.; Hwang, S.; Kim, H. Photocatalytic deposition of silver nanoparticles onto organic/inorganic composite nanofibers. Macromol. Mater. Eng. 2006, 291, 1265–1270. [Google Scholar] [CrossRef]
- Ye, W.; Yu, H.; Cheng, X.; Zhu, H.; Zheng, R.; Liu, T.; Long, N.; Shui, M.; Shu, J. Highly efficient lithium container based on non-Wadsley-Roth structure Nb18W16O93 nanowires for electrochemical energy storage. Electrochim. Acta 2018, 292, 331–338. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.; Haider, S.; Kang, I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Hohman, M.M.; Shin, M.; Rutledge, G.; Brenner, M.P. Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 2001, 13, 2201–2220. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, T.; Bhat, G.S.; Tock, R.W.; Parameswaran, S.; Ramkumar, S.S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170. [Google Scholar] [CrossRef]
- Fridrikh, S.V.; Yu, J.H.; Brenner, M.P.; Rutledge, G.C. Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 2003, 90, 144502. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, J.; Khan, G.G.; Basumallick, A. Nanowires: Properties, applications and synthesis via porous anodic aluminum oxide template. Bull. Mater. Sci. 2007, 30, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; McCann, J.T.; Xia, Y.; Marquez, M. Electrospinning: A simple and versatile technique for producing ceramic nanofibers and nanotubes. J. Am. Ceram. Soc. 2006, 89, 1861–1869. [Google Scholar] [CrossRef]
- Wu, H.; Pan, W.; Lin, D.; Li, H. Electrospinning of ceramic nanofibers: Fabrication, assembly and applications. J. Adv. Ceram. 2012, 1, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Lan, H.; Yu, H.; Qian, S.; Cheng, X.; Long, N.; Zhang, R.; Shui, M.; Shu, J. Electrospun WNb12O33 nanowires: Superior lithium storage capability and their working mechanism. J. Mater. Chem. A 2017, 5, 8972–8980. [Google Scholar] [CrossRef]
- Yana, L.; Shua, J.; Lib, C.; Chenga, X.; Zhua, H.; Yua, H.; Zhangb, C.; Zhengc, Y.; Xied, Y.; Guo, Z. W3Nb14O44 nanowires: Ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater. 2019, 16, 535–544. [Google Scholar] [CrossRef]
- Akimoto, J.; Kataokaa, K.; Kojimaa, N.; Hayashia, S.; Gotoha, Y.; Sotokawab, T.; Kumashiro, Y. A novel soft-chemical synthetic route using Na2Ti6O13 as a starting compound and electrochemical properties of H2Ti12O25. J. Power Sources 2013, 244, 679–683. [Google Scholar] [CrossRef]
- Zhao, Y.; Pang, S.; Zhang, C.; Zhang, Q.; Gu, L.; Zhou, X.; Li, G.; Cui, G. Nitridated mesoporous Li4Ti5O12 spheres for high-rate lithium-ion batteries anode material. J. Solid State Electrochem. 2013, 17, 1479–1485. [Google Scholar] [CrossRef]
- Villevieillea, C.; Thournoutb, M.V.; Scoyerb, J.; Tessierc, C.; Olivier-Fourcadea, J.; Jumasa, J.-C.; Monconduit, L. Carbon modified Li2Ti3O7 ramsdellite electrode for Li-ion batteries. Electrochim. Acta 2010, 55, 7080–7084. [Google Scholar] [CrossRef]
- Saritha, D.; Pralong, V.; Varadaraju, U.V.; Raveau, B. Electrochemical Li insertion studies on WNb12O33-A shear ReO3 type structure. J. Solid State Chem. 2010, 183, 988–993. [Google Scholar] [CrossRef]
- Someswararao, M.V.; Dubey, R.S.; Subbarao, P.S.V.; Singh, S. Electrospinning process parameters dependent investigation of TiO2 nanofibers. Results Phys. 2018, 11, 223–231. [Google Scholar] [CrossRef]
- Li, L.; Ma, Q.; Wang, S.; Song, S.; Li, B.; Guo, R.; Cheng, X.; Cheng, Q. Photocatalytic performance and degradation mechanism of aspirin by TiO2 through response surface methodology. Catalysts 2018, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Bustillo-Lecompte, C.F.; Mehrvar, M. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis. J. Environ. Manag. 2016, 182, 651–666. [Google Scholar] [CrossRef]
- Rabbi, A.; Nasouri, K.; Bahrambeygi, H.; Shoushtari, A.M.; Babaei, M.R. RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fibers Polym. 2012, 13, 1007–1014. [Google Scholar] [CrossRef]
- Homayoni, H.; Ravandi, S.A.H.; Valizadeh, M. Electrospinning of chitosan nanofibers: Processing optimization. Carbohydr. Polym. 2009, 77, 656–661. [Google Scholar] [CrossRef]
- Sarlak, N.; Nejad, M.A.F.; Shakhesi, S.; Shabani, K. Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box-Wilson central composite design (CCD). Chem. Eng. J. 2012, 210, 410–416. [Google Scholar] [CrossRef]
- Lin, Y.P.; Mehrvar, M. Photocatalytic treatment of an actual confectionery wastewater using Ag/TiO2/Fe2O3: Optimization of photocatalytic reactions using surface response methodology. Catalysts 2018, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Del Vecchio, R.J. Understanding Design of Experiments: A Primer for Technologists; Hanser/Gardner Publications Inc.: Cincinnati, OH, USA, 1997. [Google Scholar]
- Ferreira, S.L.; Bruns, R.E.; da Silva, E.G.; dos Santos, W.N.; Quintella, C.M.; David, J.M.; de Andrade, J.B.; Breitkreitz, M.C.; Jardim, I.C.; Neto, B.B. Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A 2007, 1158, 2–14. [Google Scholar] [CrossRef]
- Topuz, F.; Holtzl, T.; Szekely, G. Scavenging organic micropollutants from water with nanofibrous hypercrosslinked cyclodextrin membranes derived from green resources. Chem. Eng. J. 2021, 419, 129443. [Google Scholar] [CrossRef]
- Topuz, F.; Abdulhamid, M.A.; Holtzl, T.; Szekely, G. Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Mater. Des. 2021, 198, 109280. [Google Scholar] [CrossRef]
- Utkarsh, U.; Hegab, H.; Tariq, M.; Syed, N.A.; Rizvi, G.; Pop-Iliev, R. Towards analysis and optimization of electrospun PVP (polyvinylpyrrolidone) nanofibers. Adv. Polym. Technol. 2020, 2020, 4090747. [Google Scholar] [CrossRef]
- Abdelhakim, H.E.; Coupe, A.; Tuleu, C.; Edirisinghe, M.; Craig, D.Q.M. Electrospinning optimization of eudragit E PO with and without chlorpheniramine maleate using a design of experiment approach. Mol. Pharm. 2019, 16, 2557–2568. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Adutwum, L.A.; Oliynyk, A.O.; Luber, E.J.; Olsen, B.C.; Mar, A.; Buriak, J.M. How to optimize materials and devices via design of experiments and machine learning: Demonstration using organic photovoltaics. ACS Nano 2018, 12, 7434–7444. [Google Scholar] [CrossRef] [Green Version]
- Hardian, R.; Liang, Z.; Zhang, X.; Szekely, G. Artificial intelligence: The silver bullet for sustainable materials development. Green Chem. 2020, 22, 7521–7528. [Google Scholar] [CrossRef]
- Abramoff, M.D.; Magalhaes, P.J.; Ram, S.J. Image processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Ray, S.; Lalman, J.A. Using the Box-Benkhen design (BBD) to minimize the diameter of electrospun titanium dioxide nanofibers. Chem. Eng. J. 2011, 169, 116–125. [Google Scholar] [CrossRef]
- Khalil, A.; Hashaikeh, R.; Jouiad, M. Synthesis and morphology analysis of electrospun copper nanowires. J. Mater. Sci. 2014, 49, 3052–3065. [Google Scholar] [CrossRef]
- Deitzel, J.M.; Kleinmeyer, J.; Harris, D.; Tan, N.C.B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42, 261–272. [Google Scholar] [CrossRef]
- Matabola, K.P.; Moutloali, R.M. The influence of electrospinning parameters on the morphology and diameter of poly (vinylidene fluoride) nanofibers-effect of sodium chloride. J. Mater. Sci. 2013, 48, 5475–5482. [Google Scholar] [CrossRef]
- Haghi, A.K.; Akbari, M. Trends in electrospinning of natural nanofibers. Phys. Status Solidi. 2007, 204, 1830–1834. [Google Scholar] [CrossRef]
- Beachley, V.; Wen, X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C 2009, 29, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Elkasaby, M.; Hegab, H.A.; Mohany, A.; Rizvi, G.M. Modeling and optimization of electrospinning of polyvinyl alcohol. Adv. Polym. Technol. 2018, 37, 2114–2122. [Google Scholar] [CrossRef]
Parameters | Effect on the Nanofibers Diameter and Morphology |
---|---|
Applied Voltage | Electrospinning process requires an applied voltage beyond the critical value before nanofibers can be obtained. During the screening process, nanofibers were not produced when the voltage was below 14 kV. Nonetheless, nanofibers with irregular shapes and sizes were obtained when the voltage was between 15 kV and 18 kV. Further increase in the applied voltage between 19 kV and 27 kV resulted in the formation of uniform nanofibers. As the voltage increased beyond 28 kV, nanofibers with beads and irregular morphology were obtained. |
Polymer Conc. | Nanofibers were not obtained when the polymer concentration was below 7.3 wt %. Above a polymer concentration of 7.3 wt %, nanofibers with fairly uniform morphology were obtained. As the polymer concentration exceeded 11.8 wt %, the morphology of the resulting nanofibers became irregular. |
Spinning Distance | Nanofibers with large diameters were obtained at a spinning distance below 16 cm, while beaded nanofibers were obtained above a spinning distance of 27 cm. |
Flow Rate | Deposition of unspun droplets on the collector was observed when the flow rate was set above 2.2 mL h−1. It is also observed that a flow rate below 0.65 mL h−1. was not suitable for obtaining continuous nanofibers. |
Type of Collector | The screening experiments were carried out using a stationary plate and rotating drum collectors. The results showed that there is no significant difference in the diameter of the nanofibers obtained from the two collectors. |
Factors | Coded Factors | Coded Levels | ||||
---|---|---|---|---|---|---|
+α | +1 | 0 | −1 | −α | ||
Applied Voltage (kV) | V | 25 | 24 | 23 | 22 | 21 |
Spinning Distance (cm) | D | 26 | 24 | 22 | 20 | 18 |
Polymer Conc. (wt %) | P | 11.20 | 10.30 | 9.40 | 8.50 | 7.60 |
Flow Rate (mL hr−1) | F | 2.05 | 1.70 | 1.35 | 1 | 0.65 |
NaCl Conc. (wt %) | N | 1.05 | 0.80 | 0.55 | 0.30 | 0.05 |
Run Order | Applied Voltage (kV) | Spinning Distance (cm) | Polymer Conc. (wt %) | Flow Rate (mL h−1) | Conc. of NaCl (wt %) | Nanofibers Diameter (nm) |
---|---|---|---|---|---|---|
1 | 23 | 22 | 9.40 | 2.05 | 0.55 | 287.2 |
2 | 23 | 22 | 9.40 | 1.35 | 0.55 | 303 |
3 | 22 | 20 | 10.30 | 1.70 | 0.30 | 390.1 |
4 | 23 | 26 | 9.40 | 1.35 | 0.55 | 263.1 |
5 | 24 | 24 | 10.30 | 1.70 | 0.30 | 312 |
6 | 23 | 22 | 9.40 | 1.35 | 0.55 | 288.2 |
7 | 23 | 22 | 9.40 | 1.35 | 0.55 | 274 |
8 | 24 | 20 | 8.50 | 1.70 | 0.30 | 245.2 |
9 | 24 | 24 | 8.50 | 1.70 | 0.80 | 239.9 |
10 | 23 | 22 | 9.40 | 1.35 | 0.55 | 285.1 |
11 | 23 | 22 | 9.40 | 0.65 | 0.55 | 287.3 |
12 | 22 | 20 | 8.50 | 1.00 | 0.30 | 294.5 |
13 | 24 | 20 | 8.50 | 1.00 | 0.80 | 231.6 |
14 | 23 | 22 | 11.20 | 1.35 | 0.55 | 404.8 |
15 | 21 | 22 | 9.40 | 1.35 | 0.55 | 323.2 |
16 | 23 | 22 | 9.40 | 1.35 | 0.55 | 300.6 |
17 | 24 | 20 | 10.30 | 1.00 | 0.30 | 312.3 |
18 | 25 | 22 | 9.40 | 1.35 | 0.55 | 260.1 |
19 | 22 | 24 | 8.50 | 1.00 | 0.80 | 302.1 |
20 | 22 | 20 | 10.30 | 1.00 | 0.80 | 346.5 |
21 | 22 | 24 | 8.50 | 1.70 | 0.30 | 253.4 |
22 | 23 | 22 | 9.40 | 1.35 | 0.55 | 285.3 |
23 | 24 | 20 | 10.30 | 1.70 | 0.80 | 299.4 |
24 | 23 | 22 | 9.40 | 1.35 | 0.55 | 294.3 |
25 | 22 | 24 | 10.30 | 1.70 | 0.80 | 305 |
26 | 23 | 22 | 7.60 | 1.35 | 0.55 | 272.5 |
27 | 22 | 20 | 8.50 | 1.70 | 0.80 | 277.3 |
28 | 23 | 22 | 9.40 | 1.35 | 0.05 | 301.1 |
29 | 23 | 22 | 9.40 | 1.35 | 0.55 | 276.4 |
30 | 23 | 18 | 9.40 | 1.35 | 0.55 | 319 |
31 | 23 | 22 | 9.40 | 1.35 | 0.55 | 286.4 |
32 | 23 | 22 | 9.40 | 1.35 | 0.55 | 288.2 |
33 | 24 | 24 | 10.30 | 1.00 | 0.80 | 276.4 |
34 | 23 | 22 | 9.40 | 1.35 | 1.05 | 269.5 |
35 | 22 | 24 | 10.30 | 1.00 | 0.30 | 313.2 |
36 | 24 | 24 | 8.50 | 1.00 | 0.30 | 255.8 |
Source | Sum of Squares | DF | f-Values | p-Values |
---|---|---|---|---|
Model | 42,538.1 | 17 | 26.94 | <0.0001 |
V | 7909.77 | 1 | 85.16 | <0.0001 |
D | 2622.95 | 1 | 28.24 | <0.0001 |
P | 21,582 | 1 | 232.36 | <0.0001 |
F | 4.42 | 1 | 0.05 | 0.8298 |
N | 1086.76 | 1 | 11.7 | 0.0030 |
VD | 1061.13 | 1 | 11.42 | 0.0033 |
DP | 1301.41 | 1 | 14.01 | 0.0015 |
VF | 161.93 | 1 | 1.74 | 0.2033 |
DF | 258.41 | 1 | 2.78 | 0.1126 |
PF | 996.98 | 1 | 10.73 | 0.0042 |
VN | 208.08 | 1 | 2.24 | 0.1518 |
DN | 363.86 | 1 | 3.92 | 0.0633 |
PN | 654.08 | 1 | 7.04 | 0.0162 |
FN | 224.25 | 1 | 2.41 | 0.1376 |
P2 | 3782.33 | 1 | 40.72 | <0.0001 |
F2 | 125.22 | 1 | 1.35 | 0.2608 |
N2 | 194.54 | 1 | 2.09 | 0.1650 |
Lack of Fit | 899.74 | 9 | 1.17 | 0.4117 |
Pure Error | 772.13 | 9 | ||
Cor Total | 44,209.96 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatile, B.O.; Pugh, M.; Medraj, M. Optimization of the Electrospun Niobium–Tungsten Oxide Nanofibers Diameter Using Response Surface Methodology. Nanomaterials 2021, 11, 1644. https://doi.org/10.3390/nano11071644
Fatile BO, Pugh M, Medraj M. Optimization of the Electrospun Niobium–Tungsten Oxide Nanofibers Diameter Using Response Surface Methodology. Nanomaterials. 2021; 11(7):1644. https://doi.org/10.3390/nano11071644
Chicago/Turabian StyleFatile, Babajide Oluwagbenga, Martin Pugh, and Mamoun Medraj. 2021. "Optimization of the Electrospun Niobium–Tungsten Oxide Nanofibers Diameter Using Response Surface Methodology" Nanomaterials 11, no. 7: 1644. https://doi.org/10.3390/nano11071644
APA StyleFatile, B. O., Pugh, M., & Medraj, M. (2021). Optimization of the Electrospun Niobium–Tungsten Oxide Nanofibers Diameter Using Response Surface Methodology. Nanomaterials, 11(7), 1644. https://doi.org/10.3390/nano11071644