A Novel Approach to the Facile Growth and Organization of Photothermal Prussian Blue Nanocrystals on Different Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Substrates
2.2. Prussian Blue Nanostructure Formation on Substrates
2.3. Characterization of the Surface
2.4. Photothermal Experiences
2.5. Photothermal Simulations
3. Results and Discussion
3.1. Growth of PB Nanostructures on the Gold Surface
3.2. Growth of PB Nanostructures on Suppoted Lipid Bilayers
3.3. Photothermal Properties of PB Nanostructures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kraft, A. The history of Prussian blue. In Prussian Blue-Type Nanoparticles and Nanocomposites: Synthesis, Devices, and Applications; Guari, Y., Larionova, J., Eds.; Jenny Stanford Publishing: New York, NY, USA, 2019; pp. 1–26. [Google Scholar]
- Simonov, A.; De Baerdemaeker, T.; Bostrom, H.L.B.; Rios Gomez, M.L.; Gray, H.J.; Chernyshov, D.; Bosak, A.; Burgi, H.B.; Goodwin, A.L. Hidden diversity of vacancy networks in Prussian blue analogues. Nature 2020, 578, 256–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komkova, M.A.; Pasquarelli, A.; Andreev, E.A.; Galushin, A.A.; Karyakin, A.A. Prussian Blue modified boron-doped diamond interfaces for advanced H2O2 electrochemical sensors. Electrochim. Acta 2020, 339, 135924. [Google Scholar] [CrossRef]
- Komkova, M.A.; Zarochintsev, A.A.; Karyakina, E.E.; Karyakin, A.A. Electrochemical and sensing properties of Prussian Blue based nanozymes “artificial peroxidase”. J. Electroanal. Chem. 2020, 872, 114048. [Google Scholar] [CrossRef]
- Chen, J.; Wei, L.; Mahmood, A.; Pei, Z.; Zhou, Z.; Chen, X.; Chen, Y. Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion. Energy Storage Mater. 2020, 25, 585–612. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Yang, K.; Cao, B.; Li, Z.; Yang, L.; Pan, F. Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application. Mater. Today Energy 2019, 14, 100332. [Google Scholar] [CrossRef]
- Sookhakian, M.; Basirun, W.J.; Teridi, M.A.M.; Mahmoudian, M.R.; Azarang, M.; Zalnezhad, E.; Yoon, G.H.; Alias, Y. Prussian blue-nitrogen-doped graphene nanocomposite as hybrid electrode for energy storage applications. Electrochim. Acta 2017, 230, 316–323. [Google Scholar] [CrossRef]
- Kaye, S.S.; Long, J.R. Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J. Am. Chem. Soc. 2005, 127, 6506–6507. [Google Scholar] [CrossRef]
- Krap, C.P.; Balmaseda, J.; del Castillo, L.F.; Zamora, B.; Reguera, E. Hydrogen Storage in Prussian Blue Analogues: H2Interaction with the Metal Found at the Cavity Surface. Energy Fuels 2010, 24, 581–589. [Google Scholar] [CrossRef]
- Motkuri, R.K.; Thallapally, P.K.; McGrail, B.P.; Ghorishi, S.B. Dehydrated Prussian blues for CO2 storage and separation applications. CrystEngComm 2010, 12, 4003–4006. [Google Scholar] [CrossRef]
- Kafi, A.K.M.; Alim, S.; Jose, R.; Yusoff, M.M. Fabrication of a glucose oxidase/multiporous tin-oxide nanofiber film on Prussian blue–modified gold electrode for biosensing. J. Electroanal. Chem. 2019, 852. [Google Scholar] [CrossRef]
- Radulescu, M.C.; Bucur, M.P.; Bucur, B.; Radu, G.L. Ester flavorants detection in foods with a bienzymatic biosensor based on a stable Prussian blue-copper electrodeposited on carbon paper electrode. Talanta 2019, 199, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gu, H.; Yin, F.; Tu, Y. A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosens. Bioelectron. 2009, 24, 1527–1530. [Google Scholar] [CrossRef]
- Moulik, S.P.; De, G.C.; Panda, A.K.; Bhowmik, B.B.; Das, A.R. Dispersed Molecular Aggregates. 1. Synthesis and Characterization of Nanoparticles of Cu2[Fe(CN)6] in H2O/AOT/n-Heptane Water-in-Oil Microemulsion Media. Langmuir 1999, 15, 8361–8367. [Google Scholar] [CrossRef]
- Vaucher, S.; Li, M.; Mann, S. Synthesis of Prussian Blue Nanoparticles and Nanocrystal Superlattices in Reverse Microemulsions. Angew. Chem. Int. Ed. 2000, 39, 1793–1796. [Google Scholar] [CrossRef]
- Catala, L.; Mallah, T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications. Coord. Chem. Rev. 2017, 346, 32–61. [Google Scholar] [CrossRef]
- Larionova, J.; Guari, Y.; Sangregorio, C.; Guérin, C. Cyano-bridged coordination polymer nanoparticles. New J. Chem. 2009, 33. [Google Scholar] [CrossRef]
- Rauwel, P.; Rauwel, E. Towards the Extraction of Radioactive Cesium-137 from Water via Graphene/CNT and Nanostructured Prussian Blue Hybrid Nanocomposites: A Review. Nanomaterials 2019, 9, 682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Cheng, L. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coord. Chem. Rev. 2020, 419. [Google Scholar] [CrossRef]
- Zakaria, M.B.; Chikyow, T. Recent advances in Prussian blue and Prussian blue analogues: Synthesis and thermal treatments. Coord. Chem. Rev. 2017, 352, 328–345. [Google Scholar] [CrossRef]
- Koncki, R. Chemical Sensors and Biosensors Based on Prussian Blues. Crit. Rev. Anal. Chem. 2002, 32, 79–96. [Google Scholar] [CrossRef]
- Matos-Peralta, Y.; Antuch, M. Review—Prussian Blue and Its Analogs as Appealing Materials for Electrochemical Sensing and Biosensing. J. Electrochem. Soc. 2019, 167. [Google Scholar] [CrossRef]
- Larionova, J.; Guari, Y.; Long, J. Prussian Blue Type Nanoparticles for Biomedical Applications. In Prussian Blue-Type Nanoparticles and Nanocomposites; Jenny Stanford Publishing: New York, NY, USA, 2019; pp. 279–308. [Google Scholar]
- Mukherjee, S.; Rao, B.R.; Kotcherlakota, R.; Patra, C.R. Prussian Blue Nanoparticles for Cancer Theranostics. In Prussian Blue-Type Nanoparticles and Nanocomposites; Jenny Stanford Publishing: New York, NY, USA, 2019; pp. 243–278. [Google Scholar]
- Neff, V.D. Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. J. Electrochem. Soc. 1978, 125, 886–887. [Google Scholar] [CrossRef]
- Ricci, F.; Amine, A.; Palleschi, G.; Moscone, D. Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosens. Bioelectron. 2003, 18, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Zakharchuk, N.F.; Meyer, B.; Henning, H.; Scholz, F.; Jaworksi, A.; Stojek, Z. A comparative study of Prussian-Blue-modified graphite paste electrodes and solid graphite electrodes with mechanically immobilized Prussian Blue. J. Electroanal. Chem. 1995, 398, 23–35. [Google Scholar] [CrossRef]
- Hu, Y.-L.; Yuan, J.-H.; Chen, W.; Wang, K.; Xia, X.-H. Photochemical synthesis of Prussian blue film from an acidic ferricyanide solution and application. Electrochem. Commun. 2005, 7, 1252–1256. [Google Scholar] [CrossRef]
- Chu, Z.; Liu, Y.; Jin, W. Recent progress in Prussian blue films: Methods used to control regular nanostructures for electrochemical biosensing applications. Biosens. Bioelectron. 2017, 96, 17–25. [Google Scholar] [CrossRef]
- Bartual-Murgui, C.; Salmon, L.; Akou, A.; Thibault, C.; Molnr, G.; Mahfoud, T.; Sekkat, Z.; Real, J.A.; Bousseksou, A. High quality nano-patterned thin films of the coordination compound {Fe(pyrazine)[Pt(CN)(4)]} deposited layer-by-layer. New J. Chem. 2011, 35, 2089–2094. [Google Scholar] [CrossRef]
- Culp, J.T.; Park, J.H.; Meisel, M.W.; Talham, D.R. Interface directed assembly of cyanide-bridged Fe-Co and Fe-Mn square grid networks. Polyhedron 2003, 22, 3059–3064. [Google Scholar] [CrossRef]
- Culp, J.T.; Park, J.-H.; Benitez, I.O.; Huh, Y.-D.; Meisel, M.W.; Talham, D.R. Sequential Assembly of Homogeneous Magnetic Prussian Blue Films on Templated Surfaces. Chem. Mater. 2003, 15, 3431–3436. [Google Scholar] [CrossRef]
- Pyrasch, M.; Tieke, B. Electro- and photoresponsive films of Prussian blue prepared upon multiple sequential adsorption. Langmuir 2001, 17, 7706–7709. [Google Scholar] [CrossRef]
- Tricard, S.; Costa-Coquelard, C.; Mazerat, S.; Rivire, E.; Huc, V.; David, C.; Miserque, F.; Jegou, P.; Palacin, S.; Mallah, T. Cyanide-bridged NiCr and alternate NiFe–NiCr magnetic ultrathin films on functionalized Si(100) surface. Dalton Trans. 2012, 41, 4445. [Google Scholar] [CrossRef] [PubMed]
- Frye, F.A.; Pajerowski, D.M.; Lane, S.M.; Anderson, N.E.; Park, J.-H.; Meisel, M.W.; Talham, D.R. Effect of film thickness on the photoinduced decrease in magnetism for thin films of the cobalt iron Prussian blue analogue Rb0.7Co4[Fe(CN)6]3.0. Polyhedron 2007, 26, 2281–2286. [Google Scholar] [CrossRef]
- Frye, F.A.; Pajerowski, D.M.; Park, J.-H.; Meisel, M.W.; Talham, D.R. Anisotropic Photoinduced Magnetism in Thin Films of the Prussian Blue Analogue AjCok[Fe(CN)6]l·nH2O. Chem. Mater. 2008, 20, 5706–5713. [Google Scholar] [CrossRef]
- Trannoy, V.; Faustini, M.; Grosso, D.; Brisset, F.; Beaunier, P.; Riviere, E.; Putero, M.; Bleuzen, A. Spatially controlled positioning of coordination polymer nanoparticles onto heterogeneous nanostructured surfaces. Nanoscale 2017, 9, 5234–5243. [Google Scholar] [CrossRef]
- Tricard, S.; Fabrice, C.; Mallah, T. Sequential growth at the sub-10 nm scale of cyanide bridged coordination networks on inorganic surfaces. Dalton Trans. 2013, 42, 15835–15845. [Google Scholar] [CrossRef]
- Cobo, S.; Molnar, G.; Carcenac, F.; Szilagyi, P.A.; Salmon, L.; Vieu, C.; Bousseksou, A. Thin films of Prussian blue: Sequential assembly, patterning and electron transport properties at the nanometric scale. J. Nanosci. Nanotechnol. 2010, 10, 5042–5050. [Google Scholar] [CrossRef]
- Giocondi, M.-C.; Vié, V.; Lesniewska, E.; Milhiet, P.-E.; Zinke-Allmang, M.; Le Grimellec, C. Phase Topology and Growth of Single Domains in Lipid Bilayers. Langmuir 2001, 17, 1653–1659. [Google Scholar] [CrossRef]
- Richter, R.P.; Berat, R.; Brisson, A.R. Formation of solid-supported lipid bilayers: An integrated view. Langmuir 2006, 22, 3497–3505. [Google Scholar] [CrossRef]
- Fu, G.; Liu, W.; Feng, S.; Yue, X. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012, 48, 11567–11569. [Google Scholar] [CrossRef]
- Hoffman, H.A.; Chakrabarti, L.; Dumont, M.F.; Sandler, A.D.; Fernandes, R. Prussian blue nanoparticles for laser-induced photothermal therapy of tumors. RSC Adv. 2014, 4. [Google Scholar] [CrossRef]
- Borzenkov, M.; Chirico, G.; Pallavicini, P.; Sperandeo, P.; Polissi, A.; Dacarro, G.; Doveri, L.; Collini, M.; Sironi, L.; Bouzin, M.; et al. Nanocomposite Sprayed Films with Photo-Thermal Properties for Remote Bacteria Eradication. Nanomaterials 2020, 10, 786. [Google Scholar] [CrossRef] [Green Version]
- Dacarro, G.; Grisoli, P.; Borzenkov, M.; Milanese, C.; Fratini, E.; Ferraro, G.; Taglietti, A.; Pallavicini, P. Self-assembled monolayers of Prussian blue nanoparticles with photothermal effect. Supramol. Chem. 2017, 29, 823–833. [Google Scholar] [CrossRef]
- Maurin-Pasturel, G.; Mamontova, E.; Palacios, M.A.; Long, J.; Allouche, J.; Dupin, J.C.; Guari, Y.; Larionova, J. Gold@Prussian blue analogue core-shell nanoheterostructures: Their optical and magnetic properties. Dalton Trans. 2019, 48, 6205–6216. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Sun, L.; Liu, T.; Wang, W. Thin-Film Electrochemistry of Single Prussian Blue Nanoparticles Revealed by Surface Plasmon Resonance Microscopy. Anal. Chem. 2017, 89, 11641–11647. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Yuan, T.; Jiang, W.; Gao, J.; Chen, H.Y.; Wang, W. Accessing the Electrochemical Activity of Single Nanoparticles by Eliminating the Heterogeneous Electrical Contacts. J. Am. Chem. Soc. 2020, 142, 14307–14313. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, S.; Lu, G.; Kothari, H.M.; Bohannan, E.W.; Switzer, J.A. Epitaxial Electrodeposition of Prussian Blue Thin Films on Single-Crystal Au(110). J. Am. Chem. Soc. 2003, 125, 14998–14999. [Google Scholar] [CrossRef]
- Rascol, E.; Devoisselle, J.M.; Chopineau, J. The relevance of membrane models to understand nanoparticles-cell membrane interactions. Nanoscale 2016, 8, 4780–4798. [Google Scholar] [CrossRef] [PubMed]
- Reimhult, E.; Baumann, M.; Kaufmann, S.; Kumar, K.; Spycher, P. Advances in nanopatterned and nanostructured supported lipid membranes and their applications. Biotechnol. Genet. Eng. Rev. 2010, 27, 185–216. [Google Scholar] [CrossRef]
- Rossi, C.; Chopineau, J. Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. Eur. Biophys. J. 2007, 36, 955–965. [Google Scholar] [CrossRef]
- Ngo, G.; Felix, G.; Long, J.; Costa, L.; Saavedra, V.O.; Milhiet, P.-E.E.; Devoisselle, J.-M.M.; Guari, Y.; Larionova, J.; Chopineau, J.A. A simple approach for controlled deposition of Prussian blue analogue nanoparticles on a functionalised plasmonic gold surface. New J. Chem. 2019, 43, 3660–3664. [Google Scholar] [CrossRef] [Green Version]
- García, R. Amplitude Modulation Atomic Force Microscopy; WILEY-VCH Verlag & Co. KGaA: Weinheim, Germany, 2010. [Google Scholar]
- Milhiet, P.E.; Gubellini, F.; Berquand, A.; Dosset, P.; Rigaud, J.L.; Le Grimellec, C.; Levy, D. High-resolution AFM of membrane proteins directly incorporated at high density in planar lipid bilayer. Biophys. J. 2006, 91, 3268–3275. [Google Scholar] [CrossRef] [Green Version]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Open Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Rossi, C.; Homand, J.; Hamdi, H.; Bauche, C.; Ladant, D.; Chopineau, J. Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes. Biochemistry 2003, 42, 15273–15283. [Google Scholar] [CrossRef] [PubMed]
- Hamnett, A.; Christensen, P.A.; Higgins, S.J. Analysis of electrogenerated films by ellipsometry and infrared spectrometry. Analyst 1994, 119. [Google Scholar] [CrossRef]
- Shiba, F. Preparation of monodisperse Prussian blue nanoparticles via reduction process with citric acid. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 178–182. [Google Scholar] [CrossRef]
- Shiba, F.; Mameuda, U.; Tatejima, S.; Okawa, Y. Synthesis of uniform Prussian blue nanoparticles by a polyol process using a polyethylene glycol aqueous solution. RSC Adv. 2019, 9, 34589–34594. [Google Scholar] [CrossRef] [Green Version]
- Jeffrey, M.I.; Breuer, P.L. Cyanide leaching of gold in solutions containing sulfide. Miner. Eng. 2000, 13, 1097–1106. [Google Scholar] [CrossRef]
- Felix, G.; Nicolazzi, W.; Salmon, L.; Molnar, G.; Perrier, M.; Maurin, G.; Larionova, J.; Long, J.; Guari, Y.; Bousseksou, A. Enhanced cooperative interactions at the nanoscale in spin-crossover materials with a first-order phase transition. Phys. Rev. Lett. 2013, 110, 235701. [Google Scholar] [CrossRef] [PubMed]
- Guari, Y.; Larionova, J. (Eds.) Prussian Blue-Type Nanoparticles and Nanocomposites: Synthesis, Devices, and Applications; Jenny Stanford Publishing: New York, NY, USA, 2019. [Google Scholar]
- D’Agostino, A.; Taglietti, A.; Desando, R.; Bini, M.; Patrini, M.; Dacarro, G.; Cucca, L.; Pallavicini, P.; Grisoli, P. Bulk Surfaces Coated with Triangular Silver Nanoplates: Antibacterial Action Based on Silver Release and Photo-Thermal Effect. Nanomaterials 2017, 7, 7. [Google Scholar] [CrossRef]
- Pallavicini, P.; Basile, S.; Chirico, G.; Dacarro, G.; D’Alfonso, L.; Dona, A.; Patrini, M.; Falqui, A.; Sironi, L.; Taglietti, A. Monolayers of gold nanostars with two near-IR LSPRs capable of additive photothermal response. Chem. Commun. 2015, 51, 12928–12930. [Google Scholar] [CrossRef] [Green Version]
- Barth, J.V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Lieber, C.M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jian, Z.; Li, Z.; Ji, X. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem. Commun. 2017, 77, 54–57. [Google Scholar] [CrossRef] [Green Version]
Samples | Surfaces | Reactant Concentrations (mM) | Reaction Time (h) |
---|---|---|---|
1a | Gold | 2 | 15 |
1b | Gold | 4 | |
1c | Gold | 10 | |
2a | Amino-Gold | 2 | |
2b | Amino-Gold | 4 | |
2c | Amino-Gold | 10 | |
3a | POPC100% SLB | 2 | |
3b | POPC100% SLB | 4 | |
3c | POPC100% SLB | 10 | |
4a | POPC90%: DOTAP10% SLB | 2 | |
4b | POPC90%: DOTAP10% SLB | 4 | |
4c | POPC90%: DOTAP10% SLB | 10 | |
4d | POPC90%: DOTAP10% SLB | 2 | 10 |
4e | POPC90%: DOTAP10% SLB | 2 | 5 |
5 | POPC70%: DOTAP30% SLB | 2 | 15 |
6 | DOTAP100% SLB | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, G.; Félix, G.; Dorandeu, C.; Devoisselle, J.-M.; Costa, L.; Milhiet, P.-E.; Guari, Y.; Larionova, J.; Chopineau, J. A Novel Approach to the Facile Growth and Organization of Photothermal Prussian Blue Nanocrystals on Different Surfaces. Nanomaterials 2021, 11, 1749. https://doi.org/10.3390/nano11071749
Ngo G, Félix G, Dorandeu C, Devoisselle J-M, Costa L, Milhiet P-E, Guari Y, Larionova J, Chopineau J. A Novel Approach to the Facile Growth and Organization of Photothermal Prussian Blue Nanocrystals on Different Surfaces. Nanomaterials. 2021; 11(7):1749. https://doi.org/10.3390/nano11071749
Chicago/Turabian StyleNgo, Giang, Gautier Félix, Christophe Dorandeu, Jean-Marie Devoisselle, Luca Costa, Pierre-Emmanuel Milhiet, Yannick Guari, Joulia Larionova, and Joël Chopineau. 2021. "A Novel Approach to the Facile Growth and Organization of Photothermal Prussian Blue Nanocrystals on Different Surfaces" Nanomaterials 11, no. 7: 1749. https://doi.org/10.3390/nano11071749
APA StyleNgo, G., Félix, G., Dorandeu, C., Devoisselle, J. -M., Costa, L., Milhiet, P. -E., Guari, Y., Larionova, J., & Chopineau, J. (2021). A Novel Approach to the Facile Growth and Organization of Photothermal Prussian Blue Nanocrystals on Different Surfaces. Nanomaterials, 11(7), 1749. https://doi.org/10.3390/nano11071749