Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Morphology and Microstructure
3.2. Crystal Structure
3.3. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mátéfi-Tempfli, S.; Mátéfi-Tempfli, M.; Vlad, A.; Antohe, V.; Piraux, L. Nanowires and nanostructures fabrication using template methods: A step forward to real devices combining electrochemical synthesis with lithographic techniques. J. Mater. Sci. Mater. Electron. 2009, 20, S249–S254. [Google Scholar] [CrossRef]
- Poinern, J.; Gerrard, E.; Nurshahidah, A.; Fawcett, D. Progress in nano-engineered anodic aluminum oxide membrane development. Materials 2011, 4, 487–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorobjova, A.; Labunov, V.; Shulitski, B. Chapter 4—Carbon nanotube-based composites synthesized using porous aluminum oxide. In Research and Innovation in Carbon Nanotube-Based Composites; The World Academic Publishing Co., Ltd.: Hong Kong, China, 2015; pp. 35–65. [Google Scholar]
- Tishkevich, D.I.; Vorobjova, A.I.; Vinnik, D.A. Template assisted Ni nanowires fabrication. Mater. Sci. Forum. 2019, 946, 235–241. [Google Scholar] [CrossRef]
- Keller, F.; Hunter, M.S.; Robinson, D.L. Structural features of oxide coatings on aluminum. J. Electrochem. Soc. 1953, 100, 411–418. [Google Scholar] [CrossRef]
- Martin, C.R. Nanomaterials: A membrane-based synthetic approach. Science 1994, 266, 1961–1966. [Google Scholar] [CrossRef]
- Vorobjova, A.; Tishkevich, D.; Shimanovich, D.; Zdorovets, M.; Kozlovskiy, A.; Zubar, T.; Vinnik, D.; Dong, M.; Trukhanov, S.; Trukhanov, A.; et al. Electrochemical behaviour of Ti/Al2O3/Ni nanocomposite material in artificial physiological solution: Prospects for biomedical application. Nanomaterials 2020, 10, 173. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Searson, P.C. Electrochemical deposition of nickel nanowire arrays in single-crystal mica films. Appl. Phys. Lett. 1999, 74, 2803. [Google Scholar] [CrossRef]
- Fleischer, R.P.; Price, P.B.; Walker, R.M. Nuclear Tracks in Solids: Principles and Applications; University of California Press: Berkeley, CA, USA, 1975; p. 605. [Google Scholar]
- Kaniukov, E.Y.; Shumskaya, A.E.; Kozlovskiy, A.L.; Zdorovets, M.V.; Trukhanov, A.V.; Zubar, T.I.; Tishkevich, D.I.; Vinnik, D.A.; Khairetdinova, D.R.; Evstigneeva, S.A.; et al. Structure and magnetic properties of FeCo nanotubes obtained in pores of ion track templates. Nano-Struct. Nano-Obj. 2021, 26, 1000691. [Google Scholar]
- Thurn-Albrecht, T.; Schotter, J.; Kastle, G.A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C.T.; Tuominen, M.T.; Russell, T.P. Ultra-high density arrays of magnetic nanostructures from diblock coploymer templates. Science 2000, 290, 2126–2129. [Google Scholar] [CrossRef] [Green Version]
- Yakimchuk, D.V.; Bundyukova, V.D.; Ustarroz, J.; Terryn, H.; Baert, K.; Kozlovskiy, A.L.; Zdorovets, M.V.; Khubezhov, S.A.; Trukhanov, A.V.; Trukhanov, S.V.; et al. Morphology and microstructure evolution of gold nanostructures in the limited volume porous matrices. Sensors 2020, 20, 4397. [Google Scholar] [CrossRef]
- Bundyukova, V.D.; Yakimchuk, D.V.; Kozlovskiy, A.; Shlimas, D.I.; Tishkevich, D.I.; Kaniukov, E.Y. Synthesis of gold nanostructures using wet chemical deposition in SiO2/Si template. Lith. J. Phys. 2019, 59, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Yakimchuk, D.V.; Khubezhov, S.A.; Bundyukova, V.D.; Kozlovskiy, A.L.; Zdorovets, M.V.; Shlimas, D.I.; Tishkevich, D.I.; Kaniukov, E.Y. Copper nanostructures into pores of SiO2/Si template: Galvanic displacement, chemical and structural characterization. Mater. Res. Express 2019, 6, 105058. [Google Scholar] [CrossRef]
- Kozlovskiy, A.; Golota, I.; Zdorovets, M.; Tishkevich, D.; Zubar, T.; Trukhanov, A. The effect of the applied potentials difference on the phase composition of Co nanowires. J. Magn. Magn. Mater. 2021, 517, 167382. [Google Scholar] [CrossRef]
- Méndez, M.; González, S.; Vega, V.; Teixeira, J.M.; Hernando, B.; Luna, C.; Prida, V.M. Ni-Co alloy and multisegmented Ni/Co nanowire arrays modulated in composition: Structural characterization and magnetic properties. Crystals 2017, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Tishkevich, D.I.; Vorobjova, A.I.; Vinnik, D.A. Formation and corrosion behavior of nickel/alumina nanocomposites. Solid State Phenom. 2020, 299, 100–106. [Google Scholar] [CrossRef]
- Lee, W.; Park, S.J. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chem. Rev. 2014, 114, 7487–7556. [Google Scholar] [CrossRef]
- Srivastav, A.K. On the temperature dependent magnetization in dual-phase Co nanowires confinedly electrodeposited inside nanoporous alumina membrane. J. Cryst. Growth 2021, 562, 126084. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Grabchikov, S.S.; Lastovskii, S.B.; Trukhanov, S.V.; Zubar, T.I.; Vasin, D.S.; Trukhanov, A.V.; Kozlovskiy, A.L.; Zdorovets, M.M. Effect of the Synthesis Conditions and Microstructure for Highly Effective Electron Shields Production Based on Bi Coatings. ACS Appl. Energy Mater. 2018, 1, 1695–1702. [Google Scholar] [CrossRef]
- Xu, Q.; Meng, G.; Han, F. Porous AAO template-assisted rational synthesis of largescale 1D hybrid and hierarchically branched nanoarchitectures. Prog. Mater. Sci. 2018, 95, 243–285. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Trukhanov, A.V. Thermal stability of nano-crystalline nickel electrodeposited into porous alumina. Solid State Phenom. 2020, 299, 281–286. [Google Scholar] [CrossRef]
- Vorobjova, A.; Tishkevich, D.; Shimanovich, D.; Zubar, T.; Astapovich, K.; Kozlovskiy, A.; Zdorovets, M.; Zhaludkevich, A.; Lyakhov, D.; Michels, D.; et al. The influence of the synthesis conditions on the magnetic behaviour of the densely packed arrays of Ni nanowires in porous anodic alumina membranes. RSC Adv. 2021, 11, 3952. [Google Scholar] [CrossRef]
- Susano, M.; Proenca, M.P.; Moraes, S.; Sousa, C.T.; Araújo, J.P. Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths. Nanotechnology 2016, 27, 335301. [Google Scholar] [CrossRef]
- Guerra, Y.; da Silva, J.F.O.; Viana, B.C.; Padron-Hernandez, E. Dipolar magnetic interactions in 3×3 arrays of rectangular Ni nanopillars. Phys. E Low Dimens. Syst. Nanostruct. 2021, 126, 114439. [Google Scholar] [CrossRef]
- Kuznetsova, T.A.; Zubar, T.I.; Lapitskaya, V.A.; Sudzilouskaya, K.A.; Chizhik, S.A.; Didenko, A.L.; Svetlichnyi, V.M.; Vylegzhanina, M.E.; Kudryavtsev, V.V.; Sukhanova, T.E. Tribological properties investigation of the thermoplastic elastomers surface with the AFM lateral forces mode. IOP Conf. Ser. Mater. Sci. Eng. 2017, 256, 012022. [Google Scholar] [CrossRef] [Green Version]
- Piraux, L. Magnetic nanowires. Appl. Sci. 2020, 10, 1832. [Google Scholar] [CrossRef] [Green Version]
- Trukhanov, A.V.; Kozlovskiy, A.L.; Ryskulov, A.E.; Uglov, V.V.; Kislitsin, S.B.; Zdorovets, M.V.; Trukhanov, S.V.; Zubar, T.I.; Astapovich, K.A.; Tishkevich, D.I. Control of structural parameters and thermal conductivity of BeO ceramics using heavy ion irradiation and post-radiation annealing. Ceram. Int. 2019, 45, 15412–15416. [Google Scholar] [CrossRef]
- Sousa, C.T.; Leitao, D.C.; Proenca, M.P.; Apolinario, A.; Correia, J.G.; Ventura, J.; Araujo, J.P. Tunning pore filling of anodic alumina templates by accurate control of the bottom barrier layer thickness. Nanotechnology 2011, 22, 315602. [Google Scholar] [CrossRef] [PubMed]
- Proenca, M.P.; Sousa, C.T.; Ventura, J.; Vazquez, M.; Araujo, J.P. Ni growth inside ordered arrays of alumina nanopores: Enhancing the deposition rate. Electrochim. Acta 2012, 72, 215–221. [Google Scholar] [CrossRef]
- Inguanta, R.; Piazza, S.; Sunseri, C. Influence of electrodeposition techniques on Ni nanostructures. Electrochim. Acta 2008, 53, 5766–5773. [Google Scholar] [CrossRef]
- Tishkevich, D.; Grabchikov, S.; Zubar, T.; Vasin, D.; Trukhanov, S.; Vorobjova, A.; Yakimchuk, D.; Kozlovskiy, A.; Zdorovets, M.; Giniyatova, S.; et al. Early-stage growth mechanism and synthesis conditions-dependent morphology of nanocrystalline bi films electrodeposited from perchlorate electrolyte. Nanomaterials 2020, 10, 1245. [Google Scholar] [CrossRef] [PubMed]
- Whitney, T.M.; Jiang, J.S.; Searson, P.C.; Chien, C.L. Fabrication and magnetic properties of arrays of metallic nanowires. Science 1993, 261, 1316–1319. [Google Scholar] [CrossRef]
- Sharma, G.; Pishko, M.V.; Grimes, C.A. Fabrication of metallic nanowire arrays by electrodeposition into nanoporous alumina membranes: Effect of barrier layer. J. Mater. Sci. 2007, 42, 4738–4744. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Grabchikov, S.S.; Grabchikova, E.A.; Vasin, D.S.; Lastovskiy, S.B.; Yakushevich, A.S.; Vinnik, D.A.; Zubar, T.I.; Kalagin, I.V.; Mitrofanov, S.V.; et al. Modeling of paths and energy losses of high-energy ions in single-layered and multilayered materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 848, 012089. [Google Scholar] [CrossRef]
- Haehnel, V.; Fahler, S.; Schaaf, P.; Miglierini, M.; Mickel, C.; Schultz, L.; Schlörb, H. Towards smooth and pure iron nanowires grown by electrodeposition in self-organized alumina membranes. Acta Mater. 2010, 58, 2330–2337. [Google Scholar] [CrossRef]
- Shin, S.; Kim, B.S.; Kim, K.M.; Kong, B.H.; Cho, H.K.; Cho, H.H. Tuning the morphology of copper nanowires by controlling the growth processes in electrodeposition. J. Mater. Chem. 2011, 21, 17967–17971. [Google Scholar] [CrossRef]
- Napolskii, K.S.; Roslyakov, I.V.; Eliseev, A.A.; Petukhov, D.A.; Lukashin, A.V.; Chen, S.-F.; Liu, C.-P.; Tsirlina, G.A. Tuning the microstructure and functional properties of metal nanowire arrays via deposition potential. Electrochim. Acta 2011, 56, 2378–2384. [Google Scholar] [CrossRef]
- Tian, F.; Zhu, J.; Wei, D.; Shen, Y.T. Magnetic Field Assisting DC Electrodeposition: General methods for high-performance ni nanowire array fabrication. J. Phys. Chem. B 2005, 109, 14852–14854. [Google Scholar] [CrossRef]
- Chen, H.M.; Hsin, C.F.; Liu, R.S.; Hu, S.-F.; Huang, C.-Y. Controlling optical properties of aluminum oxide using electrochemical deposition. J. Am. Chem. Soc. 2007, 154, K11–K14. [Google Scholar] [CrossRef]
- Almazan-Celis, J.; Díaz-Sanchez, L.E.; Olea-Mejía, O.F.; Piraux, L.; Medina, J.T. Ferromagnetic resonance study on the influence of the electrolytic bath acidity on the magnetic anisotropy of Ni nanowires. J. Magn. Magn. Mater. 2021, 529, 167860. [Google Scholar] [CrossRef]
- Pirota, K.R.; Silva, E.L.; Zanchet, D.; Navas, D.; Vazquez, M.; Hernandez-Velez, M.; Knobel, M. Size effect and surface tension measurements in Ni and Co nanowires. Phys. Rev. B 2007, 76, 233410. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Zhaon, J.; Guo, Q.; Yan, Z.; Mu, F.; Chen, P.; Li, G. Effect of length on magnetic properties of Ni 300 nm wide nanowires. Phys. E Low Dimens. Syst. Nanostruct. 2013, 50, 17. [Google Scholar] [CrossRef]
- Warcholinski, B.; Gilewicz, A.; Lupicka, O.; Kuprin, A.S.; Tolmachova, G.N.; Ovcharenko, V.D.; Kolodiy, I.V.; Sawczak, M.; Kochmanska, A.E.; Kochmanski, P.; et al. Structure of CrON coatings formed in vacuum arc plasma fluxes. Surf. Coat. Technol. 2016, 309, 920–930. [Google Scholar] [CrossRef]
- Vorobjova, A.I.; Shimanovich, D.L.; Outkina, E.A.; Khodin, A.A. Highly ordered through-holes porous alumina membranes for nanowires fabrication. Appl. Phys. A 2018, 1, 124–132. [Google Scholar]
- Vorobjova, A.I.; Shimanovich, D.L.; Yanushkevich, K.I.; Prischepa, S.L.; Outkina, E.A. Properties of Ni and Ni–Fe nanowires electrochemically deposited into a porous alumina template. Beilstein J. Nanotechnol. 2016, 7, 1709–1717. [Google Scholar] [CrossRef] [Green Version]
- Vidal, E.V.; Ivanov, Y.P.; Mohammed, H.; Kosel, J. A detailed study of magnetization reversal in individual Ni nanowires. Appl. Phys. Lett. 2015, 106, 032403. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.A.; Bran, C.; Vazquez, M.; Kosel, J. Cylindrical magnetic nanowires applications. IEEE Trans. Magn. 2021, 57. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Panina, L.V.; Kostishyn, V.G.; Turchenko, V.A.; Trukhanova, E.L.; Trukhanov, A.V.; Zubar, T.I.; Ivanov, V.M.; Tishkevich, D.I.; et al. Temperature evolution of the structure parameters and exchange interactions in BaFe12−xInxO19. J. Magn. Magn. Mater. 2018, 466, 393–405. [Google Scholar] [CrossRef]
- Ohgai, T. Magnetoresistance of nanowires electrodeposited into anodized aluminum oxide nanochannels. In Nanowires—Recent Advances; Peng, X., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Thongmee, S.; Pang, H.L.; Ding, J.; Lin, J.Y. Fabrication and magnetic properties of metallic nanowires via AAO templates. J. Magn. Magn. Mater. 2009, 321, 2712–2716. [Google Scholar] [CrossRef]
- Escrig, J.; Lavın, R.; Palma, J.L.; Denardin, J.C.; Altbir, D.; Cortés, A.; Gómez, H. Geometry dependence of coercivity in Ni nanowire arrays. Nanotechnology 2008, 19, 075713–075719. [Google Scholar] [CrossRef]
- Hwang, J.H.; Dravid, V.P.; Teng, M.H.; Host, J.J.; Elliott, B.R.; Johnson, D.L.; Mason, T.O. Magnetic properties of graphitically encapsulated nickel nanocrystals. J. Mater. Res. 1997, 12, 1076–1082. [Google Scholar] [CrossRef]
- Du, Y.-W.; Xu, M.-X.; Wu, J.; Shi, Y.-B.; Lu, H.-X. Magnetic properties of ultrafine nickel particles. J. Appl. Phys. 1991, 70, 5903–5907. [Google Scholar] [CrossRef]
- Pauthenrt, R. High Field Magnetism; Date, M., Ed.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1983; p. 77. [Google Scholar]
- Dormann, J.L.; Fiorani, D.; Tronc, E. Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 1997, 98, 283–294. [Google Scholar]
- Vazquez, M.; Pirota, K.; Torrejon, J.; Navas, D.; Hernandez-Velez, M. Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics. J. Magn. Magn. Mater. 2005, 294, 174–181. [Google Scholar] [CrossRef]
- Martinez-Huerta, J.M.; Encinas, A.; Medina, J.T.; Piraux, L. Configuration dependent demagnetizing field in assemblies of interacting magnetic particles. Phys. Condens. Matter. 2013, 25, 226003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Handley, R.C. Modern magnetic materials. In Principles and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; p. 727. [Google Scholar]
- Sun, L.; Hao, Y.; Chien, C.-L.; Searson, P.C. Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 2005, 49, 79–102. [Google Scholar] [CrossRef]
- Paulus, P.M.; Luis, F.; Kröll, M.; Schmid, G.; Jongh, L.J. Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J. Magn. Magn. Mater. 2001, 224, 180–196. [Google Scholar] [CrossRef]
- Karim, S.; Maaz, K. Magnetic behavior of arrays of nickel nanowires: Effect of microstructure and aspect ratio. Mater. Chem. Phys. 2011, 130, 1103–1108. [Google Scholar] [CrossRef]
- Kartopu, G.; Yalçın, O.; Choy, K.-L.; Topkaya, R.; Kazan, S.; Aktaş, B. Size effects and origin of easy-axis in nickel nanowire arrays. J. Appl. Phys. 2011, 109, 033909. [Google Scholar] [CrossRef]
- Demand, M.; Encinas-Oropesa, A.; Kenane, S.; Ebels, U.; Huynen, I.; Piraux, L. Ferromagnetic resonance studies of nickel and permalloy nanowire arrays. J. Magn. Magn. Mater. 2002, 249, 228–233. [Google Scholar] [CrossRef]
- Encinas-Oropesa, A.; Demand, M.; Piraux, L.; Huynen, I.; Ebels, U. Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 2001, 63, 104415. [Google Scholar] [CrossRef]
- Lebecki, K.M. Modelling of magnetization reversal for long ferromagnetic nanotubes. Mater. Sci. Pol. 2008, 26, 983–988. [Google Scholar]
- Stoner, E.C.; Wohlfarth, E.P. A mechanism of magnetic hysteresis in heterogeneous alloys. Phil. Trans. R. Soc. Lond. A 1948, 240, 599–642. [Google Scholar] [CrossRef]
- Aharoni, A. Angular dependence of nucleation by curling in a prolate spheroid. J. Appl. Phys. 1997, 82, 1281–1287. [Google Scholar] [CrossRef]
- Cheng-Zhang, L.; Lodder, J. The influence of the packing density on the magnetic behaviour of alumite media. J. Magn. Magn. Mater. 1990, 88, 236–246. [Google Scholar] [CrossRef]
- Sellmyer, D.J.; Zheng, M.; Skomski, R. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Condens. Matter Phys. 2001, 13, R433. [Google Scholar] [CrossRef]
- Araujo, E.; Martínez-Huerta, J.M.; Piraux, L.; Encinas, A. Quantification of the interaction field in arrays of magnetic nanowires from the remanence curves. J. Supercond. Nov. Magn. 2018, 31, 3981–3987. [Google Scholar] [CrossRef]
- Kawamura, G.; Muto, H.; Matsuda, A. Hard template synthesis of metal nanowires. Front. Chem. 2014, 2, 104. [Google Scholar] [CrossRef] [Green Version]
- Pitzschel, K.; Bachmann, J.; Martens, S.; Montero-Moreno, J.M.; Kimling, J.; Meier, G.; Escrig, J.; Nielsch, K.; Görlitz, D. Magnetic reversal of cylindrical nickel nanowires with modulated diameters. J. Appl. Phys. 2011, 109, 033907. [Google Scholar] [CrossRef]
- Zighem, F.; Maurer, T.; Ott, F.; Chaboussant, G. Dipolar interactions in arrays of ferromagnetic nanowires: A micromagnetic study. J. Appl. Phys. 2011, 109, 013910. [Google Scholar] [CrossRef]
- Adeela, N.; Maaz, K.; Khan, U.; Karim, S.; Ahmad, M.; Iqbal, M.; Riaz, M.S.; Han, X.F.; Maqbool, M. Fabrication and temperature dependent magnetic properties of nickel nanowires embedded in alumina templates. Ceram. Int. 2015, 41, 12081–12086. [Google Scholar] [CrossRef]
- Sukovatitsina, E.V.; Samardak, A.S.; Ognev, A.V.; Chebotkevich, L. Magnetic properties of nickel nanowire arrays patterned by template electrodeposition. Solid State Phenom. 2012, 190, 522–525. [Google Scholar]
- Zeng, H.; Skomski, R.; Menon, L.; Liu, Y.; Bandyopadhyay, S.; Sellmyer, D.J. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 65, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Leitao, D.C.; Ventura, J.; Sousa, C.T.; Pereira, A.M.; Sousa, J.B.; Vazquez, M.; Araujo, J.P. Insights into the role of magnetoelastic anisotropy in the magnetization reorientation of magnetic nanowires. Phys. Rev. B 2011, 84, 014410. [Google Scholar] [CrossRef]
- Kumar, S.N.; Misra, R.K.; Satpal, S. Thermal expansion behavior of Ni–Al2O3 composites with particulate and interpenetrating phase structures: An analysis using finite element method. Comput. Mater. Sci. 2014, 90, 130–136. [Google Scholar]
- Meneses, F.; Urreta, S.E.; Escrig, J.; Bercoff, P.G. Temperature dependence of the effective anisotropy in Ni nanowire arrays. Curr. Appl. Phys. 2018, 18, 1240–1247. [Google Scholar] [CrossRef]
- Vorobjova, A.I.; Shimanovich, D.L.; Sycheva, O.A.; Ezovitova, T.I.; Tishkevich, D.I.; Trykhanov, A.V. Studying the thermodynamic properties of composite magnetic material based on anodic alumina. Rus. Microelectron. 2019, 48, 107–118. [Google Scholar] [CrossRef]
Sample Type | Sample No. | MPAA Thickness (H), μm | Pore Diameter * (dp), nm | dp/Dint Relation | Porosity (P), % |
---|---|---|---|---|---|
I | 1 | 65 | 60 ± 5 | 0.51–0.59 | 26–31 |
2 | 55 | ||||
3 | 65 | ||||
II | 4 | 75 | 70 ± 5 | 0.59–0.65 | 36–42 |
5 | 55 | ||||
6 | 55 |
Sample Type | Sample No. | Ni NWs Length (LNW), µm | Aspect Ratio (n) | Current Density (j), mA/cm2 | Deposition Duration (t), min | Ni Mass (m), mg/cm2 | Deposition Rate (V), µm/min |
---|---|---|---|---|---|---|---|
I | 1 | 11.9 * 11 ± 0.5 | 170 | 1.0 | 120 | 2.37 | 0.099 |
2 | 22.7 * 21.5 ± 0.9 | 320 | 1.5 | 60 | 1.94 | 0.189 | |
3 | 24.8 * 23 ± 1.0 | 350 | 2.0 | 120 | 4.39 | 0.191 | |
II | 4 | 31.7 * 30 ± 1.3 | 430 | 2.0 | 240 | 8.29 | 0.132 |
5 | 41.8 * 40 ± 1.7 | 570 | 3.0 | 240 | 14.04 | 0.174 | |
6 | 49.3 * 48 ± 2.0 | 700 | 4.0 | 240 | 17.27 | 0.205 |
Sample Type | Sample No. | (HKL) | Intensity, % | 2Θ, deg. | FWHM, deg. | Coherence Region Size (D), nm |
---|---|---|---|---|---|---|
I | 220 | 100 | 76.33 | 0.36 | 16 | |
3 | 111 | 2.64 | 51.87 | 1.17 | 8 | |
200 | 5.46 | 44.50 | 0.53 | 28 | ||
II | 220 | 100 | 76.31 | 0.35 | 31 | |
6 | 111 | 2.41 | 51.81 | 0.47 | 19 | |
200 | 7.98 | 44.44 | 0.28 | 29 |
Sample Type | Sample No. | Aspect Ratio | T, K | Hc, ‖ Oe | Hc, ⊥ Oe | Mr/Ms, ‖ | Mr/Ms, ⊥ |
---|---|---|---|---|---|---|---|
I | 1 | 170 | 4.2 | 770 | 207 | 0.65 | 0.07 |
300 | 723 | 182 | 0.66 | 0.08 | |||
2 | 320 | 4.2 | 798 | 222 | 0.48 | 0.07 | |
300 | 756 | 208 | 0.51 | 0.07 | |||
3 | 350 | 4.2 | 775 | 174 | 0.66 | 0.06 | |
300 | 727 | 138 | 0.65 | 0.06 | |||
II | 4 | 430 | 4.2 | 603 | 94 | 0.41 | 0.04 |
300 | 593 | 44 | 0.40 | 0.02 | |||
5 | 570 | 4.2 | 574 | 73 | 0.42 | 0.03 | |
300 | 596 | 40 | 0.44 | 0.02 | |||
6 | 700 | 4.2 | 515 | 95 | 0.35 | 0.05 | |
300 | 513 | 43 | 0.34 | 0.02 | |||
Ni NWs in Al2O3 template [51] | – | – | 580 | 162 | 0.49 | 0.066 | |
Ni NWs in Al2O3 template [52] | 200 | 300 | 624 | – | 0.30 | – | |
Bulk Ni [53] | – | – | 100 | – | 0.49 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tishkevich, D.; Vorobjova, A.; Shimanovich, D.; Kaniukov, E.; Kozlovskiy, A.; Zdorovets, M.; Vinnik, D.; Turutin, A.; Kubasov, I.; Kislyuk, A.; et al. Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane. Nanomaterials 2021, 11, 1775. https://doi.org/10.3390/nano11071775
Tishkevich D, Vorobjova A, Shimanovich D, Kaniukov E, Kozlovskiy A, Zdorovets M, Vinnik D, Turutin A, Kubasov I, Kislyuk A, et al. Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane. Nanomaterials. 2021; 11(7):1775. https://doi.org/10.3390/nano11071775
Chicago/Turabian StyleTishkevich, Daria, Alla Vorobjova, Dmitry Shimanovich, Egor Kaniukov, Artem Kozlovskiy, Maxim Zdorovets, Denis Vinnik, Andrei Turutin, Ilya Kubasov, Alexander Kislyuk, and et al. 2021. "Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane" Nanomaterials 11, no. 7: 1775. https://doi.org/10.3390/nano11071775
APA StyleTishkevich, D., Vorobjova, A., Shimanovich, D., Kaniukov, E., Kozlovskiy, A., Zdorovets, M., Vinnik, D., Turutin, A., Kubasov, I., Kislyuk, A., Dong, M., Sayyed, M. I., Zubar, T., & Trukhanov, A. (2021). Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane. Nanomaterials, 11(7), 1775. https://doi.org/10.3390/nano11071775