Highly Enhanced OER Performance by Er-Doped Fe-MOF Nanoarray at Large Current Densities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Er0.4 Fe-MOF on NF
2.2. Preparation of Fe-MOF on NF
2.3. Preparation of RuO2 on NF
2.4. Electrochemical Measurements
2.5. Characterizations
3. Results
3.1. The Structure and Composition of Er0.4 Fe-MOF/NF
3.2. Electrochemical Properties of Er0.4 Fe-MOF/NF Electrode Active Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jamesh, M.; Harb, M. Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction (OER) to achieve efficient alkaline water splitting—A review. J. Energy Chem. 2021, 56, 299–342. [Google Scholar] [CrossRef]
- Song, J.; Wei, C.; Huang, Z.F.; Liu, C.; Zeng, L.; Wang, X.; Xu, Z.J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Parra, P.A.; Wu, S.; Lin, X.; Kramer, D.; Chen, S.; Kucernak, A. Controllable heteroatom doping effects of CrxCo2-xP nanoparticles: A robust electrocatalyst for overall water splitting in alkaline solutions. ACS Appl. Mater. Inter. 2020, 12, 47397–47407. [Google Scholar] [CrossRef] [PubMed]
- Boppella, R.; Tan, J.; Yun, J.; Manorama, S.V.; Moon, J. Anion-mediated transition metal electrocatalysts for efficient water electrolysis: Recent advances and future perspectives. Coordin. Chem. Rev. 2021, 427, 213552. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Fan, C.; Meng, Q.; Tang, Y.; Qiu, X.; Fu, G.; Ma, T. Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134. [Google Scholar] [CrossRef]
- Hunter, B.M.; Gray, H.B.; Muller, A.M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 2016, 116, 14120–14136. [Google Scholar] [CrossRef]
- Anantharaj, S.; Ede, S.R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co and Ni: A review. ACS Catal. 2016, 6, 8069–8097. [Google Scholar] [CrossRef]
- Fu, G.; Lee, J.M. Ternary metal sulfides for electrocatalytic energy conversion. J Mater. Chem. A 2019, 7, 9386–9405. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Y.; Su, X.; Gu, S.; Liu, R.; Huang, Y.; Yan, S.; Li, J.; Zhang, S. Electrochemically accessing ultrathin Co(oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energ. Environ. Sci. 2019, 12, 739–746. [Google Scholar] [CrossRef]
- Puerto, P.A.; Ng, K.L.; Fahy, K.; Goode, A.E.; Ryan, M.P.; Kucernak, A. Supported transition metal phosphides: Activity survey for HER, ORR, OER and corrosion resistance in acid and alkaline electrolytes. ACS Catal. 2019, 9, 11515–11529. [Google Scholar] [CrossRef]
- Han, N.; Liu, P.; Jiang, J.; Ai, L.; Shao, Z.; Liu, S. Recent advances in nanostructured metal nitrides for water splitting. J. Mater. Chem. A 2018, 6, 19912–19933. [Google Scholar] [CrossRef]
- Li, W.; Mukerjee, S.; Ren, B.; Cao, R.; Fischer, R.A. Open framework material based thin films: Electrochemical catalysis and state-of-the-art technologies. Adv. Energy Mater. 2021, in press. [Google Scholar]
- Zheng, F.; Zhang, W.; Zhang, X.; Zhang, Y.; Chen, W. Sub-2 nm ultrathin and robust 2D FeNi layered double hydroxide nanosheets packed with 1D FeNi-MOFs for enhanced oxygen evolution electrocatalysis. Adv. Funct. Mater. 2021, in press. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Niu, S.; Li, C.; Chen, C.; Liu, Q.; Huo, J. Microwave-assisted rapid synthesis and activation of ultrathin trimetal–organic framework nanosheets for efficient electrocatalytic oxygen evolution. J. Colloid. Interf. Sci. 2021, 603, 148–156. [Google Scholar] [CrossRef]
- Senthil, R.D.; Chuah, X.F.; Lu, S.Y. In Situ grown bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities. Adv. Energy Mater. 2018, 8, 1801065. [Google Scholar] [CrossRef]
- Liu, X.; Fan, X.; Huang, H.; Lin, H.P.; Gao, J. Electronic modulation of oxygen evolution on metal doped NiFe layered double hydroxides. J. Colloid. Interf. Sci. 2021, 587, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Song, S.; Li, S.; Gao, Y.; Ge, L.; Song, W.; Ma, T.; Liu, J. High-valent bimetal Ni3S2/Co3S4 induced by Cu doping for bifunctional electrocatalytic water splitting. Appl. Catal. B Environ. 2021, 293, 120225. [Google Scholar] [CrossRef]
- Keevend, K.; Krummenacher, R.; Kungas, E.; Gerken, L.R.H.; Gogos, A.; Stiefel, M.; Herrmann, I.K. Correlative cathodoluminescence electron microscopy: Immunolabeling using rare-earth element doped nanoparticles. Small 2020, 16, 2004615. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Huang, Z.; Du, J.; Wang, X.Z.; Gu, N.; Tian, X.; Li, Y.; Liu, Y.Y.; Huo, J.Z.; Ding, B. Hydrothermal preparation of five rare-earth (re = Dy, Gd, Ho, Pr and Sm) luminescent cluster-based coordination materials: The first MOFs-based ratiometric fluorescent sensor for lysine and bifunctional sensing platform for insulin and Al3+. Inorg. Chem. 2018, 57, 12885–12899. [Google Scholar] [CrossRef]
- Wan, Z.; Hu, M.; Hu, B.; Yan, T.; Wang, K.; Wang, X. Vacancy induced photocatalytic activity of La doped In(OH)3 for CO2 reduction with water vapor. Catal. Sci. Technol. 2020, 10, 2893–2904. [Google Scholar] [CrossRef]
- Xu, H.; Shan, C.; Wu, X.; Sun, M.; Huang, B.; Tang, Y.; Yan, C.H. Fabrication of layered double hydroxide microcapsules mediated by cerium doping in metal–organic frameworks for boosting water splitting. Energ. Environ. Sci. 2020, 13, 2949–2956. [Google Scholar] [CrossRef]
- Ahmad, I.; Shoaib, A.M.; Ahmed, E.; Ahmad, M.; Keller, V.; Qamar, K.W.; Khalid, N.R. Rare earth co-doped ZnO photocatalysts: Solution combustion synthesis and environmental applications. Sep. Purif. Techno. 2020, 237, 116328. [Google Scholar] [CrossRef]
- Melillo, A.; Antonino, M.C.; Navalon, S.; Alvaro, M.; Ferrer, B. Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Appl. Catal. B Environ. 2020, 278, 119345. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, Y.; Yu, H.; Yang, Y.; Dong, X.; Xia, L. Noble-metal-free MOF Derived ZnS/CeO2 Decorated with CuS Cocatalyst Photocatalyst with Efficient Photocatalytic Hydrogen Production Character. ChemCatChem 2020, 12, 5669–5678. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Cai, T.; Dong, W.; Tang, L.; Xia, X.; Wang, L.; Li, T. Boosting photocatalytic performance in mixed-valence MIL-53(Fe) by changing Fe(II)/Fe(III) ratio. ACS Appl. Mater. Inter. 2019, 11, 28791–28800. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Li, Y.; Liu, Y.; Yu, L.; Zhang, G. Ambient fast synthesis and active sites deciphering of hierarchical foam-like trimetal-organic framework nanostructures as a platform for highly efficient oxygen evolution electrocatalysis. Adv. Mater. 2019, 31, 1901139. [Google Scholar] [CrossRef] [PubMed]
- Louie, M.W.; Bell, A.T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337. [Google Scholar] [CrossRef] [Green Version]
- Bordiga, S.; Lamberti, C.; Ricchiardi, G.; Regli, L.; Bonino, F.; Damin, A.; Lillerud, K.-P.; Bjorgenb, M.; Zecchina, A. Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. 2004, 20, 2300–2301. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Wang, G.; Ding, Y.; Wang, C.; Yuan, B.; Lin, Y. NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1800584. [Google Scholar] [CrossRef]
- Cao, C.; Ma, D.D.; Xu, Q.; Wu, X.T.; Zhu, Q.L. Semisacrificial template growth of self-supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation. Adv. Funct. Mater. 2018, 29, 1807418. [Google Scholar] [CrossRef]
- Chandra, V.; Park, J.; Chun, Y.; Woo, J.; Hwang, I.C.; Kim, K.S. Water-dispersible magnetite-reduced graphene oxide composities for arsenic removal. ACS Nano 2010, 4, 3976–3986. [Google Scholar] [CrossRef] [PubMed]
- Araya, T.; Jia, M.; Yang, J.; Zhao, P.; Cai, K.; Ma, W.; Huang, Y. Resin modified MIL-53 (Fe) MOF for improvement of photocatalytic performance. Appl. Catal. B Environ. 2017, 203, 768–777. [Google Scholar] [CrossRef]
- Chen, J.Y.; Dang, L.; Liang, H.; Bi, W.; Gerken, J.B.; Jin, S.; Stahl, S.S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe4+ by mossbauer spectroscopy. J. Am. Chem. Soc. 2015, 137, 15090–15093. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Bu, Y.; Lv, Z.; Mahmood, J.; Han, G.F.; Ahmad, I.; Kim, G.; Zhong, Q.; Baek, J.-B. Porous cobalt phosphide polyhedrons with iron doping as an efficient bifunctional electrocatalyst. Small 2017, 13, 1701167. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.T.; Deng, Y.T.; Pao, C.W.; Chen, J.L.; Lee, J.F.; Lai, K.T.; Liaw, W.F. The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting. J. Mater. Chem. A 2020, 8, 9939–9950. [Google Scholar] [CrossRef]
- Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, B.; Bi, J.; Fang, D.; Yang, S. Constructing ultrathin CoP nanomeshes by Er-doping for highly efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2019, 7, 5769–5778. [Google Scholar] [CrossRef]
- Xie, M.; Ma, Y.; Lin, D.; Xu, C.; Xie, F.; Zeng, W. Bimetal-organic framework MIL-53(Co-Fe): An efficient and robust electrocatalyst for the oxygen evolution reaction. Nanoscale 2020, 12, 67–71. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Yang, Y.; Zhang, S.; Zhu, H.; Zhu, X.; Xing, H.; Zhang, Y.; Huang, B.; Guo, S.; et al. Co3O4/Fe0.33Co0.66P interface nanowire for enhancing water oxidation catalysis at high current density. Adv Mater. 2018, 30, 1803551. [Google Scholar] [CrossRef]
- Jin, Y.; Huang, S.; Yue, X.; Du, H.; Shen, P.K. Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 2018, 8, 2359–2363. [Google Scholar] [CrossRef]
- Riyajuddin, S.; Azmi, K.; Pahuja, M.; Kumar, S.; Maruyama, T.; Bera, C. Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 2021, 15, 5586–5599. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Wang, Z.; Huang, X.; Qin, Y.; Yang, H.; Ren, X. Integrating well-controlled core-shell structures into “superaerophobic” electrodes for water oxidation at large current densities. Appl. Catal. B Environ. 2021, 286, 119920. [Google Scholar] [CrossRef]
- Yang, W.; Zeng, J.; Hua, Y.; Xu, C.; Siwal, S.S.; Zhang, Q. Defect engineering of cobalt microspheres by S doping and electrochemical oxidation as efficient bifunctional and durable electrocatalysts for water splitting at high current densities. J. Power Sources 2019, 436, 226887. [Google Scholar] [CrossRef]
- Zhou, W.; Xue, Z.; Liu, Q.; Li, Y.; Hu, J.; Li, G. Trimetallic MOF-74 films grown on Ni foam as bifunctional electrocatalysts for overall water splitting. ChemSusChem 2020, 13, 5647–5653. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Cui, H.; Wang, C. Electronic structure and crystalline phase dual modulation via anion-cation Co-doping for boosting oxygen evolution with long-term stability under large current density. ACS Appl. Mater. Inter. 2019, 11, 34819–34826. [Google Scholar] [CrossRef]
- Tang, T.; Jiang, W.J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y.Y. Electronic and morphological dual modulation of colbat carbonate hydroxides by Mn doping towards highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Am. Chem. Sci. 2017, 24, 8320–8328. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, T.; Zhang, M.; Tong, Y.; Zhong, C.; Zhang, N. 3D nitrogen-anion-decorated nickel sulfides for highly efficient overall water splitting. Adv. Mater. 2017, 29, 1701584. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Li, X.; Liu, Q.; Cai, M.; Liu, K.; Liu, M. Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1900430. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Jiang, W.J.; Wei, Z.; Tang, T.; Ma, J.; Hu, J.S. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Sci. 2019, 17, 7005–7013. [Google Scholar] [CrossRef]
- Yu, M.; Wang, Z.; Liu, J.; Sun, F.; Yang, P.; Qiu, J. A hierarchically porous and hydrophilic 3D nickel–iron/mxene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy 2019, 63, 103880. [Google Scholar] [CrossRef]
- Senthil, R.D.; Lin, H.W.; Lu, S.Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy 2019, 57, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Liu, D.; Yu, Y.; Zhang, B. Enhancing oxygen evolution reaction at high current densities on amorphous-like Ni-Fe-S ultrathin nanosheets via oxygen incorporation and electrochemical tuning. Adv. Sci. 2017, 4, 1600343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Li, X.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Materi. 2018, 28, 1706847. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Dang, N.K.; Sultan, S.; Thangavel, P.; Jeong, H.Y.; Kim, K.S. Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat. Sustain. 2020, 3, 556–563. [Google Scholar] [CrossRef]
- Wu, F.; Guo, X.; Hao, G.; Hu, Y.; Jiang, W. Electrodeposition of sulfur-engineered amorphous nickel hydroxides on MIL-53(Fe) nanosheets to accelerate the oxygen evolution reaction. Nanoscale 2019, 11, 14785–14792. [Google Scholar] [CrossRef]
- Xie, M.; Yang, L.; Ji, Y.; Wang, Z.; Ren, X.; Liu, Z. An amorphous Co-carbonate-hydroxide nanowire array for efficient and durable oxygen evolution reaction in carbonate electrolytes. Nanoscale 2017, 9, 16612–16615. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Zou, P.; Nairan, A.; Zhang, Y.; Liu, J.; Liu, K. Exceptional performance of hierarchical Ni–Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energ. Environ. Sci. 2020, 13, 86–95. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Miao, Y.; Mu, G.; Lin, D.; Xu, C.; Zeng, W.; Xie, F. Highly Enhanced OER Performance by Er-Doped Fe-MOF Nanoarray at Large Current Densities. Nanomaterials 2021, 11, 1847. https://doi.org/10.3390/nano11071847
Ma Y, Miao Y, Mu G, Lin D, Xu C, Zeng W, Xie F. Highly Enhanced OER Performance by Er-Doped Fe-MOF Nanoarray at Large Current Densities. Nanomaterials. 2021; 11(7):1847. https://doi.org/10.3390/nano11071847
Chicago/Turabian StyleMa, Yan, Yujie Miao, Guomei Mu, Dunmin Lin, Chenggang Xu, Wen Zeng, and Fengyu Xie. 2021. "Highly Enhanced OER Performance by Er-Doped Fe-MOF Nanoarray at Large Current Densities" Nanomaterials 11, no. 7: 1847. https://doi.org/10.3390/nano11071847
APA StyleMa, Y., Miao, Y., Mu, G., Lin, D., Xu, C., Zeng, W., & Xie, F. (2021). Highly Enhanced OER Performance by Er-Doped Fe-MOF Nanoarray at Large Current Densities. Nanomaterials, 11(7), 1847. https://doi.org/10.3390/nano11071847