Optical Studies and Transmission Electron Microscopy of HgCdTe Quantum Well Heterostructures for Very Long Wavelength Lasers
Abstract
:1. Introduction
2. Materials and Methods
- Experimental investigation of the optical properties of structures by different spectroscopy techniques: PC, PL and magneto-optical transmission measurements in mid- and far-infrared ranges. TEM was also used as a supplementary technique for some structures.
- Identification of the interband transitions on the spectra.
- Determination of the QW parameters (thickness and Cd content).
- Calculation of the band diagrams of structures, the rates of Auger and radiative recombination.
- Studies of SE and carrier density dynamics.
- Determination of the dominating recombination mechanism and the maximum temperature at which SE can be obtained.
3. Results
3.1. Transmission Electron Microscopy
3.2. Photoconductivity and Magnetooptical Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rogalski, A. Semiconductor detectors and focal plane arrays for far-infrared imaging. Opto-Electron. Rev. 2013, 21, 406–426. [Google Scholar] [CrossRef] [Green Version]
- Rogalski, A. HgCdTe infrared detector material: History, status and outlook. Rep. Prog. Phys. 2005, 68, 2267–2336. [Google Scholar] [CrossRef] [Green Version]
- Bernevig, B.A.; Hughes, T.L.; Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 2006, 314, 1757–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büttner, B.; Liu, C.X.; Tkachov, G.; Novik, E.G.; Brüne, C.; Buhmann, H.; Hankiewicz, E.M.; Recher, P.; Trauzettel, B.; Zhang, S.C.; et al. Single valley Dirac fermions in zero-gap HgTe quantum wells. Nat. Phys. 2011, 7, 418–422. [Google Scholar] [CrossRef] [Green Version]
- Zholudev, M.; Teppe, F.; Orlita, M.; Consejo, C.; Torres, J.; Dyakonova, N.; Czapkiewicz, M.; Wróbel, J.; Grabecki, G.; Mikhailov, N.; et al. Magnetospectroscopy of two-dimensional HgTe-based topological insulators around the critical thickness. Phys. Rev. B 2012, 86, 205420. [Google Scholar] [CrossRef]
- Zholudev, M.S.; Kadykov, A.M.; Fadeev, M.A.; Marcinkiewicz, M.; Ruffenach, S.; Consejo, C.; Knap, W.; Torres, J.; Morozov, S.V.; Gavrilenko, V.I.; et al. Experimental observation of temperature-driven topological phase transition in HgTe/CdHgTe Quantum Wells. Condens. Matter 2019, 4, 27. [Google Scholar] [CrossRef]
- Tarasenko, S.A.; Durnev, M.V.; Nestoklon, M.O.; Ivchenko, E.L.; Luo, J.-W.; Zunger, A. Split Dirac cones in HgTe/CdTe quantum wells due to symmetry-enforced level anticrossing at interfaces. Phys. Rev. B 2015, 91, 081302. [Google Scholar] [CrossRef] [Green Version]
- Morozov, S.V.; Rumyantsev, V.V.; Fadeev, M.; Zholudev, M.S.; Kudryavtsev, K.; Antonov, A.V.; Kadykov, A.M.; Dubinov, A.A.; Mikhailov, N.N.; Dvoretsky, S.A.; et al. Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm. Appl. Phys. Lett. 2017, 111, 192101. [Google Scholar] [CrossRef]
- Vitiello, M.S.; Scalari, G.; Williams, B.; De Natale, P. Quantum cascade lasers: 20 years of challenges. Opt. Express 2015, 23, 5167–5182. [Google Scholar] [CrossRef]
- Talwar, D.N.; Vandevyver, M. Vibrational properties of HgCdTe system. J. Appl. Phys. 1984, 56, 1601. [Google Scholar] [CrossRef]
- Alymov, G.; Rumyantsev, V.; Morozov, S.; Gavrilenko, V.; Aleshkin, V.; Svintsov, D. Fundamental limits to far-infrared lasing in Auger-suppressed HgCdTe quantum wells. ACS Photonics 2020, 7, 98–104. [Google Scholar] [CrossRef]
- Bleuse, J.; Bonnet-Gamard, J.; Mula, G.; Magnea, N.; Pautrat, J.-L. Laser emission in HgCdTe in the 2–3.5 μm range. J. Cryst. Growth 1999, 197, 529–536. [Google Scholar] [CrossRef]
- Arias, J.M.; Zandian, M.; Zucca, R.; Singh, J. HgCdTe infrared diode lasers grown by MBE. Semicond. Sci. Technol. 1993, 8, S255. [Google Scholar] [CrossRef]
- Köenig, M.; Wiedmann, S.; Bruene, C.; Roth, A.; Buhmann, H.; Molenkamp, L.W.; Qi, X.-L.; Zhang, S.-C. Quantum spin hall insulator state in HgTe quantum wells. Science 2007, 318, 766–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunczer, L.; Leubner, P.; Endres, M.; Müller, V.L.; Brüne, C.; Buhmann, H.; Molenkamp, L.W. Approaching quantization in macroscopic quantum spin Hall devices through gate training. Phys. Rev. Lett. 2019, 123, 047701. [Google Scholar] [CrossRef] [Green Version]
- Ruffenach, S.; Kadykov, A.; Rumyantsev, V.V.; Torres, J.; Coquillat, D.; But, D.; Krishtopenko, S.; Consejo, C.; Knap, W.; Winnerl, S.; et al. HgCdTe-based heterostructures for terahertz photonics. APL Mater. 2017, 5, 035503. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Fukushima, T.; Yabe, Y.; Tombet, S.A.B.; Satou, A.; A Dubinov, A.; Aleshkin, V.Y.; Mitin, V.V.; Ryzhii, V.; Otsuji, T. The gain enhancement effect of surface plasmon polaritons on terahertz stimulated emission in optically pumped monolayer graphene. New J. Phys. 2013, 15, 075003. [Google Scholar] [CrossRef]
- Mikhailov, N.N.; Smirnov, R.N.; Dvoretsky, S.A.; Sidorov, Y.G.; Shvets, V.A.; Spesivtsev, E.V.; Rykhlitski, S.V. Growth of Hg1−xCdxTe nanostructures by molecular beam epitaxy with ellipsometric control. Int. J. Nanotechnol. 2006, 3, 120–130. [Google Scholar] [CrossRef]
- Harris, K.A.; Hwang, S.; Blanks, D.K.; Cook, J.W.; Schetzina, J.F.; Otsuka, N.; Baukus, J.P.; Hunter, A.T. Characterization study of a HgTe-CdTe superlattice by means of transmission electron microscopy and infrared photoluminescence. Appl. Phys. Lett. 1986, 48, 396. [Google Scholar] [CrossRef]
- Mikhailov, N.; Shvets, V.; Ikusov, D.; Uzhakov, I.; Dvoretsky, S.; Mynbaev, K.; Dluzewski, P.; Morgiel, J.; Swiatek, Z.; Bonchyk, O.; et al. Interface studies in HgTe/HgCdTe quantum wells. Phys. Status Solidi B 2020, 257, 1900598. [Google Scholar] [CrossRef]
- Becker, C.R.; Hatch, S.D.; Goschenhofer, F.; Latussek, V.; Dell, J.; Faraone, L. Photoluminescence of HgTe/Hg1−xCdxTe superlattices and a study of minibands. Phys. Rev. B 2007, 75, 115115. [Google Scholar] [CrossRef]
- Shao, J.; Lu, W.; Tsen, G.K.O.; Guo, S.; Dell, J.M. Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice. J. Appl. Phys. 2012, 112, 063512. [Google Scholar] [CrossRef]
- Shao, J.; Lu, W.; Lu, X.; Yue, F.; Li, Z.; Guo, S.; Chu, J. Modulated photoluminescence spectroscopy with a step-scan Fourier transform infrared spectrometer. Rev. Sci. Instrum. 2006, 77, 063104. [Google Scholar] [CrossRef] [Green Version]
- Morozov, S.V.; Rumyantsev, V.V.; Kadykov, A.M.; Dubinov, A.A.; Kudryavtsev, K.E.; Antonov, A.V.; Mikhailov, N.N.; Dvoretskii, S.A.; Gavrilenko, V.I. Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures. Appl. Phys. Lett. 2016, 108, 092104. [Google Scholar] [CrossRef]
- Rumyantsev, V.V.; Morozov, S.V.; Antonov, A.V.; Zholudev, M.S.; Kudryavtsev, K.E.; Gavrilenko, V.I.; Dvoretskii, S.A.; Mikhailov, N.N. Spectra and kinetics of THz photoconductivity in narrow-gap Hg1−xCdxTe (x < 0.2) epitaxial films. Semicond. Sci. Technol. 2013, 28, 125007. [Google Scholar] [CrossRef]
- Rumyantsev, V.; Fadeev, M.; Aleshkin, V.; Kulikov, N.; Utochkin, V.; Mikhailov, N.; Dvoretskii, S.; Pavlov, S.; Hübers, H.; Gavrilenko, V.; et al. Carrier recombination, long-wavelength photoluminescence, and stimulated emission in HgCdTe quantum well heterostructures. Phys. Status Solidi B 2019, 256, 1800546. [Google Scholar] [CrossRef]
- Bovkun, L.S.; Ikonnikov, A.V.; Aleshkin, V.Y.; Spirin, K.E.; Gavrilenko, V.I.; Mikhailov, N.N.; Dvoretskii, S.A.; Teppe, F.; Piot, B.A.; Potemski, M.; et al. Landau level spectroscopy of valence bands in HgTe quantum wells: Effects of symmetry lowering. J. Phys. Condens. Matter 2019, 31, 145501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glyavin, M.; Zotova, I.; Rozental, R.; Malkin, A.; Sergeev, A.; Fokin, A.; Rumyantsev, V.; Morozov, S. Investigation of the Frequency Double-Multiplication Effect in a Sub-THz Gyrotron. J. Infrared Millim. Terahertz Waves 2020, 41, 1245–1251. [Google Scholar] [CrossRef]
- Rumyantsev, V.V.; Maremyanin, K.V.; Razova, A.A.; Sergeev, S.M.; Mikhailov, N.N.; Dvoretskii, S.A.; Gavrilenko, V.I.; Morozov, S.V. Investigation of the photosensitivity of narrow-gap and gapless HgCdTe solid solutions in the terahertz and sub-terahertz range. Semiconductors 2020, 54, 1096–1102. [Google Scholar] [CrossRef]
- Lotnyk, A.; Poppitz, D.; Ross, U.; Gerlach, J.; Frost, F.; Bernütz, S.; Thelander, E.; Rauschenbach, B. Focused high- and low-energy ion milling for TEM specimen preparation. Microelectron. Reliab. 2015, 55, 2119–2125. [Google Scholar] [CrossRef]
- Luttinger, J.M.; Kohn, W. Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 1955, 97, 869–883. [Google Scholar] [CrossRef]
- Foreman, B.A. Elimination of spurious solutions from eight-band k × p theory. Phys. Rev. B 1997, 56, R12748–R12751. [Google Scholar] [CrossRef] [Green Version]
- Novik, E.G.; Pfeuffer-Jeschke, A.; Jungwirth, T.; Latussek, V.; Becker, C.R.; Landwehr, G.; Buhmann, H.; Molenkamp, L.W. Band structure of semimagnetic Hg1−yMnyTe quantum wells. Phys. Rev. B 2005, 72, 035321. [Google Scholar] [CrossRef] [Green Version]
- Los, J.; Fasolino, A.; Catellani, A. Generalization of the k∙p approach for strained layered semiconductor structures grown on high-index-planes. Phys. Rev. B 1996, 53, 4630–4648. [Google Scholar] [CrossRef]
- Aleshkin, V.Y.; Dubinov, A.A.; Rumyantsev, V.V.; Fadeev, M.A.; Domnina, O.L.; Mikhailov, N.N.; Dvoretsky, S.A.; Teppe, F.; Gavrilenko, V.I.; Morozov, S.V. Radiative recombination in narrow gap HgTe/CdHgTe quantum well heterostructures for laser applications. J. Phys. Condens. Matter 2018, 30, 495301. [Google Scholar] [CrossRef] [PubMed]
- Aleshkin, V.Y.; Dubinov, A.A.; Rumyantsev, V.V.; Morozov, S.V. Threshold energies of Auger recombination in HgTe/CdHgTe quantum well heterostructures with 30–70 meV bandgap. J. Phys. Condens. Matter 2019, 31, 425301. [Google Scholar] [CrossRef]
- Aleshkin, V.Y.; Rumyantsev, V.V.; Kudryavtsev, K.E.; Dubinov, A.A.; Utochkin, V.V.; Fadeev, M.A.; Alymov, G.; Mikhailov, N.N.; Dvoretsky, S.A.; Teppe, F.; et al. Auger recombination in narrow gap HgCdTe/CdHgTe quantum well heterostructures. J. Appl. Phys. 2021, 129, 133106. [Google Scholar] [CrossRef]
- Bonchyk, O.Y.; Savytskyy, H.V.; Świątek, Z.; Morgiel, Y.; Izhnin, I.I.; Voitsekhovskii, A.V.; Korotaev, A.G.; Mynbaev, K.D.; Fitsych, O.I.; Varavin, V.; et al. TEM studies of structural defects in HgTe/HgCdTe quantum wells. Appl. Nanosci. 2019, 10, 2867–2871. [Google Scholar] [CrossRef]
- Ikonnikov, A.V.; Bovkun, L.S.; Rumyantsev, V.V.; Krishtopenko, S.S.; Aleshkin, V.Y.; Kadykov, A.M.; Orlita, M.; Potemski, M.; Gavrilenko, V.I.; Morozov, S.V.; et al. On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation. Semiconductors 2017, 51, 1531–1536. [Google Scholar] [CrossRef]
- Kadykov, A.M.; Krishtopenko, S.; Jouault, B.; Desrat, W.; Knap, W.; Ruffenach, S.; Consejo, C.; Torres, J.; Morozov, S.V.; Mikhailov, N.N.; et al. Temperature-induced topological phase transition in HgTe quantum wells. Phys. Rev. Lett. 2018, 120, 086401. [Google Scholar] [CrossRef] [Green Version]
- Shvets, V.A.; Mikhailov, N.N.; Ikusov, D.G.; Uzhakov, I.N.; Dvoretskii, S.A. Determining the compositional profile of HgTe/CdxHg1−xTe quantum wells by single-wavelength ellipsometry. Opt. Spectrosc. 2019, 127, 340–346. [Google Scholar] [CrossRef]
- Utochkin, V.V.; Kudryavtsev, K.E.; Fadeev, M.A.; Razova, A.A.; Bykov, D.S.; Aleshkin, V.Y.; Dubinov, A.A.; Mikhailov, N.N.; Dvoretsky, S.A.; Rumyantsev, V.V.; et al. Mid-IR stimulated emission in Hg(Cd)Te/CdHgTe quantum well structures up to 200 K due to suppressed Auger recombination. Laser Phys. 2020, 31, 015801. [Google Scholar] [CrossRef]
Sample No. | D (µm) | y | d (nm) | x | N |
---|---|---|---|---|---|
A0120 | 2 | 0.58 | 3.65 | 0 | 5 |
A0130 | 8 | 0.66 | 7.8 | 0 | 5 |
B0225 | 9 | 0.65 | 6.8 | 0 | 10 |
Sample No. | d | x | PC Cutoff, μm | λSE, μm | Ith, kW/cm2 | Tmax, K | Eth, meV | W, meV | Ndark, 1010 cm−2 | |
---|---|---|---|---|---|---|---|---|---|---|
Ex Situ (±0.3) | Ex Situ (±0.005) | 4.2 K | 77 K | |||||||
A0130 | 7.8 | 0.08 | 17.9 | 15.2 | 20.3 | 5 | 50 | 14.7 | 7.6 ± 1.6 | 5.8 ± 0.6 |
B0225 | 6.9 | 0.067 | 18.3 | 15 | 22 | 4 | 80 | 20.1 | 8.6 ± 0.8 | 6.2 ± 0.6 |
A1222 | 6.1 | 0.945 | 10.5 | 9 | 11 | 0.1 | 100 | 19 | 3.4 ± 0.5 | 6.0 ± 0.6 |
A0120 | 3.2 | 0 | 10.5 | 8.87 | 10.2 | 0.13 | 175 | 42.6 | 9.6 ± 1.4 | 0.15 ± 0.03 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumyantsev, V.V.; Razova, A.A.; Bovkun, L.S.; Tatarskiy, D.A.; Mikhailovskii, V.Y.; Zholudev, M.S.; Ikonnikov, A.V.; Uaman Svetikova, T.A.; Maremyanin, K.V.; Utochkin, V.V.; et al. Optical Studies and Transmission Electron Microscopy of HgCdTe Quantum Well Heterostructures for Very Long Wavelength Lasers. Nanomaterials 2021, 11, 1855. https://doi.org/10.3390/nano11071855
Rumyantsev VV, Razova AA, Bovkun LS, Tatarskiy DA, Mikhailovskii VY, Zholudev MS, Ikonnikov AV, Uaman Svetikova TA, Maremyanin KV, Utochkin VV, et al. Optical Studies and Transmission Electron Microscopy of HgCdTe Quantum Well Heterostructures for Very Long Wavelength Lasers. Nanomaterials. 2021; 11(7):1855. https://doi.org/10.3390/nano11071855
Chicago/Turabian StyleRumyantsev, Vladimir V., Anna A. Razova, Leonid S. Bovkun, Dmitriy A. Tatarskiy, Vladimir Y. Mikhailovskii, Maksim S. Zholudev, Anton V. Ikonnikov, Tatyana A. Uaman Svetikova, Kirill V. Maremyanin, Vladimir V. Utochkin, and et al. 2021. "Optical Studies and Transmission Electron Microscopy of HgCdTe Quantum Well Heterostructures for Very Long Wavelength Lasers" Nanomaterials 11, no. 7: 1855. https://doi.org/10.3390/nano11071855
APA StyleRumyantsev, V. V., Razova, A. A., Bovkun, L. S., Tatarskiy, D. A., Mikhailovskii, V. Y., Zholudev, M. S., Ikonnikov, A. V., Uaman Svetikova, T. A., Maremyanin, K. V., Utochkin, V. V., Fadeev, M. A., Remesnik, V. G., Aleshkin, V. Y., Mikhailov, N. N., Dvoretsky, S. A., Potemski, M., Orlita, M., Gavrilenko, V. I., & Morozov, S. V. (2021). Optical Studies and Transmission Electron Microscopy of HgCdTe Quantum Well Heterostructures for Very Long Wavelength Lasers. Nanomaterials, 11(7), 1855. https://doi.org/10.3390/nano11071855