A Comparative Study of the Influence of Nitrogen Content and Structural Characteristics of NiS/Nitrogen-Doped Carbon Nanocomposites on Capacitive Performances in Alkaline Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Polymer-Derived Nitrogen-Doped Carbon Materials
2.3. Microwave-Assisted Synthesis of NiS/Nitrogen-Doped Carbon Nanocomposites
2.4. Characterizations
2.5. Electrochemical Measurements
3. Results
3.1. Characterizations of A-PVP-NC and PI-NC
3.2. Crystalline, Chemical Environmental, Morphological, and Wettability Observations of NiS/A-PVP-NC and NiS/PI-NC
3.3. Electrochemical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Truong, H.V.A.; Dao, H.V.; Do, T.C.; Ho, C.M.; To, X.D.; Dang, T.D.; Ahn, K.K. Mapping fuzzy energy management strategy for PEM Fuel Cell–Battery–Supercapacitor hybrid excavator. Energies 2020, 13, 3387. [Google Scholar] [CrossRef]
- Andrade, T.S.; Dracopoulos, V.; Lianos, P. Solar energy conversion and storage using a photocatalytic fuel cell combined with a supercapacitor. Electronics 2021, 10, 273. [Google Scholar] [CrossRef]
- Kandambeth, S.; Kale, V.S.; Shekhah, O.; Alshareef, H.N.; Eddaoudi, M. 2D covalent-organic framework electrodes for supercapacitors and rechargeable metal-ion batteries. Adv. Energy Mater. 2021, 2100177. [Google Scholar] [CrossRef]
- Lei, W.; Liu, H.; Xiao, J.; Wang, Y.; Lin, L. Moss-derived mesoporous carbon as bi-functional electrode materials for lithium–sulfur batteries and supercapacitors. Nanomaterials 2019, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Sambasivam, S.; Raghavendra, K.; Yedluri, A.K.; Arbi, H.M.; Narayanaswamy, V.; Gopi, C.V.; Choi, B.-C.; Kim, H.-J.; Alzahmi, S.; Obaidat, I.M. Facile fabrication of MnCo2O4/NiO flower-like nanostructure composites with improved energy storage Capacity for High-Performance Supercapacitors. Nanomaterials 2021, 11, 1424. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, Z.; Li, H.; Wang, C.-A. Designing pinecone-like and hierarchical manganese cobalt sulfides for advanced supercapacitor electrodes. J. Mater. Chem. A 2018, 6, 12782–12793. [Google Scholar] [CrossRef]
- Colipai, C.; Southam, G.; Oyarzún, P.; González, D.; Díaz, V.; Contreras, B.; Nancucheo, I. Synthesis of copper sulfide nanoparticles using biogenic H2S produced by a low-pH sulfidogenic bioreactor. Minerals 2018, 8, 35. [Google Scholar] [CrossRef] [Green Version]
- Ansari, S.A.; Parveen, N.; Al-Othoum, M.A.S.; Ansari, M.O. Effect of Washing on the Electrochemical Performance of a Three-Dimensional Current Collector for Energy Storage Applications. Nanomaterials 2021, 11, 1596. [Google Scholar] [CrossRef] [PubMed]
- Opra, D.P.; Gnedenkov, S.V.; Sinebryukhov, S.L.; Gerasimenko, A.V.; Ziatdinov, A.M.; Sokolov, A.A.; Podgorbunsky, A.B.; Ustinov, A.Y.; Kuryavyi, V.G.; Mayorov, V.Y.; et al. Enhancing Lithium and Sodium Storage Properties of TiO2(B) Nanobelts by Doping with Nickel and Zinc. Nanomaterials 2021, 11, 1703. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, Q.; Wang, Z.; Feng, L.; Zhang, J.; Niu, C. PEDOT-Coated Red Phosphorus Nanosphere Anodes for Pseudocapacitive Potassium-Ion Storage. Nanomaterials 2021, 11, 1732. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, X.; Wang, Z.; Sun, F.; Dorrell, D.G. A review of supercapacitor modeling, estimation, and applications: A control/management perspective. Renew. Sustain. Energy Rev. 2018, 81, 1868–1878. [Google Scholar] [CrossRef]
- Muzaffar, A.; Ahamed, M.B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 2019, 101, 123–145. [Google Scholar] [CrossRef]
- Rathinamala, I.; Babu, I.M.; William, J.J.; Muralidharan, G.; Prithivikumaran, N. Extra-Durable Hybrid Supercapacitor Based on Cobalt Sulfide and Carbon (MWCNT) Matrix Electrodes. J. Energy Storage 2021, 34, 102200. [Google Scholar] [CrossRef]
- Wang, T.; Liu, M.; Ma, H. Facile synthesis of flower-like copper-cobalt sulfide as binder-free faradaic electrodes for supercapacitors with improved electrochemical properties. Nanomaterials 2017, 7, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Hong, X.; You, X.; Zhang, X.; Zhao, X.; Chen, X.; Ye, M.; Liu, X. Designing heterostructured metal sulfide core-shell nanoneedle films as battery-type electrodes for hybrid supercapacitors. Energy Storage Mater. 2020, 24, 541–549. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Wu, Z.; Sun, M.; Han, S.; Cai, C.; Shen, W.; Fu, Y. Nanocomposites of cobalt sulfide embedded carbon nanotubes with enhanced supercapacitor performance. J. Electrochem. Soc. 2019, 166, A1031. [Google Scholar] [CrossRef]
- Wang, X.; Tian, L.; Long, X.; Yang, M.; Song, X.; Xie, W.; Liu, D.; Fu, Y.; Li, J.; Li, Y.; et al. Cracked bark-inspired ternary metallic sulfide (NiCoMnS4) nanostructure on carbon cloth for high-performance aqueous asymmetric supercapacitors. Sci. China Mater. 2021, 64, 1632–1641. [Google Scholar] [CrossRef]
- Chang, R.-J.; Sheng, Y.; Chen, T.; Mkhize, N.; Lu, Y.; Bhaskaran, H.; Warner, J.H. Morphology Control of Two-Dimensional Tin Disulfide on Transition Metal Dichalcogenides Using Chemical Vapor Deposition for Nanoelectronic Applications. ACS Appl. Nano Mater. 2019, 2, 4222–4231. [Google Scholar] [CrossRef]
- Sridhar, V.; Park, H. Carbon nanofiber linked FeS2 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries and supercapacitors. J. Alloys Compd. 2018, 732, 799–805. [Google Scholar] [CrossRef]
- Attia, S.Y.; Mohamed, S.G.; Barakat, Y.F.; Hassan, H.H.; Zoubi, W.A. Supercapacitor electrode materials: Addressing challenges in mechanism and charge storage. Rev. Inorg. Chem. 2021. [Google Scholar] [CrossRef]
- Hillier, N.; Yong, S.; Beeby, S. The good, the bad and the porous: A review of carbonaceous materials for flexible supercapacitor applications. Energy Rep. 2020, 6, 148–156. [Google Scholar] [CrossRef]
- Li, Z.; Peng, H.; Liu, R.; Mo, Y.; Cao, B.; Lai, W.; Li, X.; Pan, L.; Chen, Y. Quantitative assessment of basal-, edge- and defect-surfaces of carbonaceous materials and their influence on electric double-layer capacitance. J. Power Sources 2020, 457, 228022. [Google Scholar] [CrossRef]
- Han, X.; Jiang, H.; Zhou, Y.; Hong, W.; Zhou, Y.; Gao, P.; Ding, R.; Liu, E. A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria. J. Alloys Compd. 2018, 744, 544–551. [Google Scholar] [CrossRef]
- Mostazo-López, M.J.; Ruiz-Rosas, R.; Castro-Muñiz, A.; Nishihara, H.; Kyotani, T.; Morallón, E.; Cazorla-Amorós, D. Ultraporous nitrogen-doped zeolite-templated carbon for high power density aqueous-based supercapacitors. Carbon 2018, 129, 510–519. [Google Scholar] [CrossRef] [Green Version]
- Zuliani, J.E.; Tong, S.; Jia, C.Q.; Kirk, D.W. Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. J. Power Sources 2018, 395, 271–279. [Google Scholar] [CrossRef]
- Sarkar, A.; Chakraborty, A.K.; Bera, S.; Krishnamurthy, S. Novel hydrothermal synthesis of CoS2/MWCNT nanohybrid electrode for supercapacitor: A systematic investigation on the influence of MWCNT. J. Phys. Chem. C 2018, 122, 18237–18246. [Google Scholar] [CrossRef]
- Yang, S.; Huang, P.; Duan, M.; Li, Y.; Gao, G. Controllable Synthesis of Iron Sulfide/CNT Nanocomposites in Solvothermal System. Cryst. Res. Technol. 2019, 54, 1900029. [Google Scholar] [CrossRef]
- Choi, S.H.; Kang, Y.C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595–1603. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, Y.; Xu, L.; Zheng, W. Microwave-assisted synthesis of graphene-NiS/Ni3S2 composites for enhanced microwave absorption behaviors through a sulfuration method. Ceram. Int. 2018, 44, 21786–21793. [Google Scholar] [CrossRef]
- Bahmani, M.; Imani, M.; Tadjarodi, A. Facile Microwave-Assisted Preparation of Hetero-Structured CuCo2S4/CuCo2O4 Nanoparticles Using Organic Agent of Thiourea. Chem. Proc. 2021, 3, 60. [Google Scholar] [CrossRef]
- He, M.; Zhou, Y.; Huang, T.; Nie, S.; Wang, Y.; Xu, Z.; Huo, Y.; Xu, R.; Chen, X.; Peng, H. Flower-like CoS hierarchitectures@polyaniline organic-inorganic heterostructured composites: Preparation and enhanced microwave absorption performance. Compos. Sci. Technol. 2020, 200, 108403. [Google Scholar] [CrossRef]
- Scibioh, M.A.; Viswanathan, B. Chapter 3—Electrode materials for supercapacitors. In Materials for Supercapacitor Applications, 1st ed.; Scibioh, M.A., Viswanathan, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 35–204. [Google Scholar]
- Algadri, N.A.; Ibrahim, K.; Hassan, Z.; Bououdina, M. Cost-effective single-step carbon nanotube synthesis using microwave oven. Mater. Res. Express 2017, 4, 085602. [Google Scholar] [CrossRef]
- Sevilla, M.; Díez, N.; Fuertes, A.B. More Sustainable Chemical Activation Strategies for the Production of Porous Carbons. ChemSusChem 2021, 14, 94–117. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-M.; Kim, K.-W.; Park, Y.-K.; An, K.-H.; Park, S.-J.; Kim, B.-J. Activated Carbons from Thermoplastic Precursors and Their Energy Storage Applications. Nanomaterials 2019, 9, 896. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, S.; Nagamuthu, S.; Ryu, K.-S. CuCo2O4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications. Electrochim. Acta 2017, 238, 99–106. [Google Scholar] [CrossRef]
- Subramanyam, P.; Ghosal, P.; Deepa, M.; Subrahmanyam, C. Cuprous Sulfide@Carbon nanostructures based counter electrodes with cadmium sulfide/titania photoanode for liquid junction solar cells. Electrochim. Acta 2018, 278, 374–384. [Google Scholar] [CrossRef]
- Vatankhah, A.R.; Hosseini, M.A.; Malekie, S. The characterization of gamma-irradiated carbon-nanostructured materials carried out using a multi-analytical approach including Raman spectroscopy. Appl. Surf. Sci. 2019, 488, 671–680. [Google Scholar] [CrossRef]
- Hung, T.-F.; Cheng, W.-J.; Chang, W.-S.; Yang, C.-C.; Shen, C.-C.; Kuo, Y.-L. Ascorbic Acid-Assisted Synthesis of Mesoporous Sodium Vanadium Phosphate Nanoparticles with Highly sp2-Coordinated Carbon Coatings as Efficient Cathode Materials for Rechargeable Sodium-Ion Batteries. Chem. Eur. J. 2016, 22, 10620–10626. [Google Scholar] [CrossRef]
- Zolkin, A.; Semerikova, A.; Chepkasov, S.; Khomyakov, M. Characteristics of the Raman spectra of diamond-like carbon films. Influence of methods of synthesis. Mater. Today Proc. 2017, 4, 11480–11485. [Google Scholar] [CrossRef]
- Xiong, B.; Li, J.; He, C.; Tang, X.; Lv, Z.; Li, X.; Yan, X. Effect of pore morphology and surface roughness on wettability of porous titania films. Mater. Res. Express 2020, 7, 115013. [Google Scholar] [CrossRef]
- Kim, Y.K.; Park, H.B.; Lee, Y.M. Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: Effect of the molecular weight of polyvinylpyrrolidone. J. Membr. Sci. 2005, 251, 159–167. [Google Scholar] [CrossRef]
- Abdelaal, M.M.; Mohamed, S.; Barakat, Y.F.; Derbala, H.A.Y.; Hassan, H.H.; Al Zoubi, W. N-Aminophthalimide as a Synthon for Heterocyclic Schiff bases: Efficient Utilization as Corrosion Inhibitors of Mild Steel in 0.5 mol·L−1 H2SO4 Solution. Egypt. J. Chem. 2018, 61, 539–558. [Google Scholar]
- Geiszler, V.C.; Koros, W.J. Effects of Polyimide Pyrolysis Conditions on Carbon Molecular Sieve Membrane Properties. Ind. Eng. Chem. Res. 1996, 35, 2999–3003. [Google Scholar] [CrossRef]
- Jiang, D.; Xu, Q.; Meng, S.; Xia, C.; Chen, M. Construction of cobalt sulfide/graphitic carbon nitride hybrid nanosheet composites for high performance supercapacitor electrodes. J. Alloys Compd. 2017, 706, 41–47. [Google Scholar] [CrossRef]
- Hung, T.-F.; Yin, Z.-W.; Betzler, S.B.; Zheng, W.; Yang, J.; Zheng, H. Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors. Chem. Eng. J. 2019, 367, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wei, F.; Sui, Y.; Qi, J.; Zhang, X. Interconnected NiS-nanosheets@porous carbon derived from Zeolitic-imidazolate frameworks (ZIFs) as electrode materials for high-performance hybrid supercapacitors. Int. J. Hydrogen Energy 2020, 45, 19237–19245. [Google Scholar] [CrossRef]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R., Jr. NIST X-ray Photoelectron Spectroscopy Database. Available online: https://srdata.nist.gov/xps/selEnergyType.aspx (accessed on 15 June 2021).
- Zhang, L.; Tu, L.-Y.; Liang, Y.; Chen, Q.; Li, Z.-S.; Li, C.-H.; Wang, Z.-H.; Li, W. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv. 2018, 8, 42280–42291. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Guan, B.; Hu, B.; Xu, Z.; Wang, D.; Zhang, H. Vulcanizing time controlled synthesis of NiS microflowers and its application in asymmetric supercapacitors. Electrochim. Acta 2017, 230, 428–437. [Google Scholar] [CrossRef]
- Lazar, P.; Mach, R.; Otyepka, M. Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J. Phys. Chem. C 2019, 123, 10695–10702. [Google Scholar] [CrossRef]
- Hung, T.-F.; Hsieh, T.-H.; Tseng, F.-S.; Wang, L.-Y.; Yang, C.-C.; Yang, C.-C. High-Mass Loading Hierarchically Porous Activated Carbon Electrode for Pouch-Type Supercapacitors with Propylene Carbonate-Based Electrolyte. Nanomaterials 2021, 11, 785. [Google Scholar] [CrossRef]
- Le, T.; Yang, Y.; Huang, Z.; Kang, F. Preparation of microporous carbon nanofibers from polyimide by using polyvinyl pyrrolidone as template and their capacitive performance. J. Power Sources 2015, 278, 683–692. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Liu, J.; Liu, J.; Li, G.; Peng, H.; Chen, K.; Zhang, Z. Nitrogen-and Oxygen-Containing Three-Dimensional Hierarchical Porous Graphitic Carbon for Advanced Supercapacitor. Nanomaterials 2020, 10, 1540. [Google Scholar] [CrossRef]
- Yan, G.; Bai, L.; Feng, J.; Zhang, Z. A Comparative Study on the Wettability of Two Coal Samples during Deep Burial Metamorphism. J. Chem. 2020, 2020, 5608429. [Google Scholar] [CrossRef] [Green Version]
- Yedluri, A.K.; Kulurumotlakatla, D.K.; Sangaraju, S.; Ihab, M.O.; Kim, H.-J. Facile synthesis of novel and highly efficient CoNi2S4-Ni(OH)2 nanosheet arrays as pseudocapacitive-type electrode material for high-performance electrochemical supercapacitors. J. Energy Storage 2020, 31, 101623. [Google Scholar] [CrossRef]
- Zhu, H.; Sun, X.; Yang, H.; Ta, S.; Wang, L.; Zhu, H.; Zhang, Q. Polydopamine-derived nitrogen-doped carbon-coated NiS nanoparticles as a battery-type electrode for high-performance supercapacitors. Ceram. Int. 2021, 47, 9332–9341. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, H.; Xiong, W.; Yang, S.; Huang, H.; Zou, Y.; Zhou, W.; Cheng, Z.; Wang, J.; Luo, G. One-Pot Synthesis of Glucose-Derived Carbon Coated Ni3S2 Nanowires as a Battery-Type Electrode for High Performance Supercapacitors. Nanomaterials 2021, 11, 678. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Peng, H.; Zhang, H.; Kang, J.; Zhu, C.; Delgado, G.; Byrne, D.; Faulkner, S.; Freyman, M.; Lu, X. Printing porous carbon aerogels for low temperature supercapacitors. Nano Lett. 2021, 21, 3731–3737. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Chandrasekaran, S.; Zhang, H.; Ma, A.; Kang, J.; Zhang, L.; Lu, X.; Qian, F.; Zhu, C.; Duoss, E.B.; et al. 3D-Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Adv. Mater. 2020, 32, 1906652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theerthagiri, J.; Thiagarajan, K.; Senthilkumar, B.; Khan, Z.; Senthil, R.A.; Arunachalam, P.; Madhavan, J.; Ashokkumar, M. Synthesis of hierarchical cobalt phosphate nanoflakes and their enhanced electrochemical performances for supercapacitor applications. ChemistrySelect 2017, 2, 201–210. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Li, X.; Lv, Z.; Wang, X.; Liu, Z.; Huang, X. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors. Electrochim. Acta 2018, 282, 618–625. [Google Scholar] [CrossRef] [Green Version]
- An, G.-H. Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon. Appl. Surf. Sci. 2020, 530, 147220. [Google Scholar] [CrossRef]
- El-Hout, S.I.; Mohamed, S.G.; Gaber, A.; Attia, S.Y.; Shawky, A.; El-Sheikh, S.M. High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications. J. Energy Storage 2021, 34, 102001. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zheng, J.; Jiang, H.; Dong, X.; Liu, X.; Meng, C. Fabrication of vanadium sulfide (VS4) wrapped with carbonaceous materials as an enhanced electrode for symmetric supercapacitors. J. Colloid Interface Sci. 2020, 574, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.J.; Vickraman, P.; Justin, A.S. Electrochemical performance of nitrogen-doped graphene anchored nickel sulfide nanoflakes for supercapacitors. Appl. Surf. Sci. 2019, 483, 1142–1148. [Google Scholar] [CrossRef]
- Yu, W.; Lin, W.; Shao, X.; Hu, Z.; Li, R.; Yuan, D. High performance supercapacitor based on Ni3S2/carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. J. Power Sources 2014, 272, 137–143. [Google Scholar] [CrossRef]
- Marand, N.A.; Masoudpanah, S.; Alamolhoda, S.; Bafghi, M.S. Solution combustion synthesis of nickel sulfide/reduced graphene oxide composite powders as electrode materials for high-performance supercapacitors. J. Energy Storage 2021, 39, 102637. [Google Scholar] [CrossRef]
- Zhao, F.; Xie, D.; Huang, W.; Song, X.; Sial, M.A.Z.G.; Wu, H.; Deng, F.; Zhang, Q.; Zou, J.; Zeng, X. Defect-rich honeycomb-like nickel cobalt sulfides on graphene through rapid microwave-induced synthesis for ultrahigh rate supercapacitors. J. Colloid Interface Sci. 2020, 580, 160–170. [Google Scholar] [CrossRef]
- Shi, J.; Li, X.; He, G.; Zhang, L.; Li, M. Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 20619–20626. [Google Scholar] [CrossRef]
Electrode Materials | Electrolyte | Specific Capacity 1 (C/g) | Capacity Retention 2 (%) | References |
---|---|---|---|---|
CoS/g-C3N4 | 3 M KOH | 301@1 A/g, 207@10 A/g | 69 | [45] |
NiS/porous carbon | 2 M KOH | 609@1 A/g, 453@10 A/g | 74 | [47] |
NiS/N-doped carbon | 6 M KOH | 665@1 A/g, 346@10 A/g | 52 | [57] |
CuS/rGO | 6 M KOH | 235@1 A/g, 122@10 A/g | 52 | [64] |
VS4/CNTs/rGO | 1 M LiClO4/PC | 1018@1 A/g, 413@10 A/g | 41 | [65] |
NiS/N-doped graphene | 6 M KOH | 504@1 A/g, 160@10 A/g | 32 | [66] |
Ni3S2/CNFs | 2 M KOH | 97@1 A/g, 60@10 A/g | 63 | [67] |
NiS/rGO | 6 M KOH | 124@1 A/g, 50@10 A/g | 40 | [68] |
NiCo2S4/graphene | 3 M KOH | 297@1 A/g, 279@10 A/g | 94 | [69] |
CoS/graphene | 2 M KOH | 1354@1 A/g, 1061@10 A/g | 78 | [70] |
NiS/A-PVP-NC | 6 M KOH | 101@1 A/g, 74@10 A/g | 73 | This study |
NiS/PI-NC | 6 M KOH | 54@1 A/g, 20@10 A/g | 37 | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaal, M.M.; Hung, T.-C.; Mohamed, S.G.; Yang, C.-C.; Huang, H.-P.; Hung, T.-F. A Comparative Study of the Influence of Nitrogen Content and Structural Characteristics of NiS/Nitrogen-Doped Carbon Nanocomposites on Capacitive Performances in Alkaline Medium. Nanomaterials 2021, 11, 1867. https://doi.org/10.3390/nano11071867
Abdelaal MM, Hung T-C, Mohamed SG, Yang C-C, Huang H-P, Hung T-F. A Comparative Study of the Influence of Nitrogen Content and Structural Characteristics of NiS/Nitrogen-Doped Carbon Nanocomposites on Capacitive Performances in Alkaline Medium. Nanomaterials. 2021; 11(7):1867. https://doi.org/10.3390/nano11071867
Chicago/Turabian StyleAbdelaal, Mohamed M., Tzu-Cheng Hung, Saad Gomaa Mohamed, Chun-Chen Yang, Huei-Ping Huang, and Tai-Feng Hung. 2021. "A Comparative Study of the Influence of Nitrogen Content and Structural Characteristics of NiS/Nitrogen-Doped Carbon Nanocomposites on Capacitive Performances in Alkaline Medium" Nanomaterials 11, no. 7: 1867. https://doi.org/10.3390/nano11071867
APA StyleAbdelaal, M. M., Hung, T. -C., Mohamed, S. G., Yang, C. -C., Huang, H. -P., & Hung, T. -F. (2021). A Comparative Study of the Influence of Nitrogen Content and Structural Characteristics of NiS/Nitrogen-Doped Carbon Nanocomposites on Capacitive Performances in Alkaline Medium. Nanomaterials, 11(7), 1867. https://doi.org/10.3390/nano11071867