Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of ZIF-8 and Porous Carbon
2.2. Structural Characterizations of ZIF, CZIF, and Se/CZIF Composite
2.3. Electrochemical Characterization of Se/C Cathode in Li-Se Batteries
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thackeray, M.M.; Wolverton, C.; Isaacs, E.D. Electrical energy storage for transportation—Approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 2012, 5, 7854–7863. [Google Scholar] [CrossRef]
- Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 2009, 13, 1513–1522. [Google Scholar] [CrossRef]
- Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 2014, 114, 11751–11787. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A. The rise of lithium–selenium batteries. Sustain. Energy Fuels 2017, 1, 14–29. [Google Scholar] [CrossRef]
- He, J.; Lv, W.; Chen, Y.; Xiong, J.; Wen, K.; Xu, C.; Zhang, W.; Li, Y.; Qin, W.; He, W. Three-dimensional hierarchical C-Co-N/Se derived from metal-organic framework as superior cathode for Li-Se batteries. J. Power Sources 2017, 363, 103. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, L.; Yi, Z.; Liu, Y.; Huang, Y. Confined selenium within porous carbon nanospheres as cathode for advanced Li–Se batteries. Nano Energy 2014, 9, 229–236. [Google Scholar] [CrossRef]
- Liu, Y.; Tai, Z.; Zhang, Q.; Wang, H.; Pang, W.K.; Liu, H.K.; Konstantinov, K.; Guo, Z. A new energy storage system: Rechargeable potassium-selenium battery. Nano Energy 2017, 35, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Jiang, Y.; Manthiram, A. Long Cycle Life, Low Self-Discharge Sodium–Selenium Batteries with High Selenium Loading and Suppressed Polyselenide Shuttling. Adv. Energy Mater. 2018, 8, 1701953. [Google Scholar] [CrossRef]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.X.; Xin, S.; Guo, Y.G.; Wan, L.J. Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 2013, 52, 13186–13200. [Google Scholar] [CrossRef]
- Lee, J.T.; Kim, H.; Oschatz, M.; Lee, D.C.; Wu, F.; Lin, H.T.; Zdyrko, B.; Cho, W.I.; Kaskel, S.; Yushin, G. Micro-and Mesoporous Carbide-Derived Carbon–Selenium Cathodes for High-Performance Lithium Selenium Batteries. Adv. Energy Mater. 2015, 5, 1400981. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, Z.; Lai, Y.; Qu, Y.; Wang, X.; Li, J. Selenium encapsulated into 3D interconnected hierarchical porous carbon aerogels for lithium–selenium batteries with high rate performance and cycling stability. J. Power Sources 2014, 267, 394–404. [Google Scholar] [CrossRef]
- Yang, C.P.; Xin, S.; Yin, Y.X.; Ye, H.; Zhang, J.; Guo, Y.G. An advanced selenium–carbon cathode for rechargeable lithium–selenium batteries. Angew. Chem. Int. Ed. 2013, 52, 8363–8367. [Google Scholar] [CrossRef]
- Liu, Y.; Si, L.; Zhou, X.; Liu, X.; Xu, Y.; Bao, J.; Dai, Z. A selenium-confined microporous carbon cathode for ultrastable lithium–selenium batteries. J. Mater. Chem. A 2014, 2, 17735–17739. [Google Scholar] [CrossRef]
- Jia, M.; Mao, C.; Niu, Y.; Hou, J.; Liu, S.; Bao, S.; Jiang, J.; Xu, M.; Lu, Z. A selenium-confined porous carbon cathode from silk cocoons for Li–Se battery applications. RSC Adv. 2015, 5, 96146–96150. [Google Scholar] [CrossRef]
- Li, X.; Liang, J.; Hou, Z.; Zhang, W.; Wang, Y.; Zhu, Y.; Qian, Y. A New Salt-Baked Approach for Confining Selenium in Metal Complex-Derived Porous Carbon with Superior Lithium Storage Properties. Adv. Funct. Mater. 2015, 25, 5229–5238. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Q.; Qi, C.; Jin, J.; Zhu, Y.; Wen, Z. One-step microwave synthesized core–shell structured selenium@ carbon spheres as cathode materials for rechargeable lithium batteries. Chem. Commun. 2016, 52, 5613–5616. [Google Scholar] [CrossRef] [Green Version]
- Balakumar, K.; Kalaiselvi, N. Selenium containing Tube-in-Tube carbon: A one dimensional carbon frame work for selenium cathode in Li-Se battery. Carbon 2017, 112, 79–90. [Google Scholar] [CrossRef]
- Zeng, L.; Zeng, W.; Jiang, Y.; Wei, X.; Li, W.; Yang, C.; Zhu, Y.; Yu, Y. A Flexible Porous Carbon Nanofibers-Selenium Cathode with Superior Electrochemical Performance for Both Li-Se and Na-Se Batteries. Adv. Energy Mater. 2015, 5, 1401377. [Google Scholar] [CrossRef]
- Guo, J.; Wen, Z.; Wang, Q.; Jin, J.; Ma, G. A conductive selenized polyacrylonitrile cathode material for re-chargeable lithium batteries with long cycle life. J. Mater. Chem. A 2015, 3, 19815–19821. [Google Scholar] [CrossRef]
- Wang, H.; Li, S.; Chen, Z.; Liu, H.K.; Guo, Z. A novel type of one-dimensional organic selenium-containing fiber with superior performance for lithium–selenium and sodium–selenium batteries. RSC Adv. 2014, 4, 61673–61678. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Wei, X.; Wang, J.; Jiang, Y.; Li, W.; Yu, Y. Flexible one-dimensional carbon–selenium composite nanofibers with superior electrochemical performance for Li–Se/Na–Se batteries. J. Power Sources 2015, 281, 461–469. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, X.; Feng, J.; Xiong, S. Selenium in nitrogen-doped microporous carbon spheres for high-performance lithium–selenium batteries. J. Mater. Chem. A 2015, 3, 4539–4546. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, L.; Zhu, Y.; Xu, Y.; Liang, J.; Wei, D.; Qian, Y. Selenium/interconnected porous hollow carbon bubbles composites as the cathodes of Li–Se batteries with high performance. Nanoscale 2014, 6, 12952–12957. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.J.; Kang, Y.C. Selenium-impregnated hollow carbon microspheres as efficient cathode materials for lithium-selenium batteries. Carbon 2017, 111, 198–206. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Li, Q.; Qu, Y.; Jiang, S. Selenium encapsulated into interconnected polymer-derived porous carbon nanofiber webs as cathode materials for lithium-selenium batteries. J. Electrochem. Soc. 2014, 161, A2093. [Google Scholar] [CrossRef]
- Shiraz, M.H.A.; Zhu, H.; Liu, Y.; Sun, X.; Liu, J. Activation-free synthesis of microporous carbon from polyvinylidene fluoride as host materials for lithium-selenium batteries. J. Power Sources 2019, 438, 227059. [Google Scholar] [CrossRef]
- Wang, B.; Côté, A.P.; Furukawa, H.; O’Keeffe, M.; Yaghi, O.M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 2008, 453, 207–211. [Google Scholar] [CrossRef]
- Meng, X.; Yang, X.Q.; Sun, X. Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 2012, 24, 3589–3615. [Google Scholar] [CrossRef] [PubMed]
- Dameron, A.; Seghete, D.; Burton, B.; Davidson, S.; Cavanagh, A.; Bertrand, J.; George, S. Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chem. Mater. 2008, 20, 3315–3326. [Google Scholar] [CrossRef]
- George, S.M.; Yoon, B.; Dameron, A.A. Surface Chemistry for Molecular Layer Deposition of Organic and Hybrid Organic-Inorganic Polymers. Acc. Chem. Res. 2009, 42, 498–508. [Google Scholar] [CrossRef]
- Lee, B.H.; Yoon, B.; Anderson, V.R.; George, S.M. Alucone alloys with tunable properties using alucone molecular layer deposition and Al2O3 atomic layer deposition. J. Phys. Chem. C 2012, 116, 3250–3257. [Google Scholar] [CrossRef]
- Shiraz, M.H.A.; Zhu, H.; Liu, J. Nanoscale Al2O3 coating to stabilize selenium cathode for sodium–selenium batteries. J. Mater. Res. 2020, 35, 747–755. [Google Scholar] [CrossRef]
- Li, X.; Lushington, A.; Sun, Q.; Xiao, W.; Liu, J.; Wang, B.; Ye, Y.; Nie, K.; Hu, Y.; Xiao, Q. Safe and durable high-temperature lithium–sulfur batteries via molecular layer deposited coating. Nano Lett. 2016, 16, 3545–3549. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Liu, J. Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. J. Mater. Chem. A 2020, 8, 22100–22110. [Google Scholar] [CrossRef]
- Jafari, S.; Ghorbani-Shahna, F.; Bahrami, A.; Kazemian, H. Adsorptive removal of toluene and carbon tetrachloride from gas phase using Zeolitic Imidazolate Framework-8: Effects of synthesis method, particle size, and pretreatment of the adsorbent. Microporous Mesoporous Mater. 2018, 268, 58–68. [Google Scholar] [CrossRef]
- Venna, S.R.; Carreon, M.A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2010, 132, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; He, M.; Wang, K.; Chen, R.; Zhong, Z.; Wang, H. High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm 2013, 15, 3601–3606. [Google Scholar] [CrossRef]
- Li, S.; Yang, H.; Xu, R.; Jiang, Y.; Gong, Y.; Gu, L.; Yu, Y. Selenium embedded in MOF-derived N-doped microporous carbon polyhedrons as a high performance cathode for sodium–selenium batteries. Mater. Chem. Front. 2018, 2, 1574–1582. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, T.; Li, Y.; Hu, L.; Dai, C.; Zhang, Y.; Li, Y.; Liu, D.; Xu, M. Selenium encapsulated into metal–organic frameworks derived N-doped porous carbon polyhedrons as cathode for Na–Se batteries. ACS Appl. Mater. Interfaces 2017, 9, 41339–41346. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-K.; Park, J.-S.; Kang, Y.C. Metal-organic-framework-derived N-doped hierarchically porous carbon polyhedrons anchored on crumpled graphene balls as efficient selenium hosts for high-performance lithium–selenium batteries. ACS Appl. Mater. Interfaces 2018, 10, 16531–16540. [Google Scholar] [CrossRef]
- Jafari, S.; Ghorbani, F.; Bahrami, A.; Kazemian, H.; Yousefinejad, S. Removal of toluene from air by zeolitic imidazolate framework-8: Synthesis, characterization, and experimental breakthrough curve. Int. J. Sci. Stud. 2017, 5, 1073–1082. [Google Scholar]
- Zhou, J.; Yang, J.; Xu, Z.; Zhang, T.; Chen, Z.; Wang, J. A high performance lithium–selenium battery using a microporous carbon confined selenium cathode and a compatible electrolyte. J. Mater. Chem. A 2017, 5, 9350–9357. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Xu, Y.; Zhu, Y.; Liu, Y.; Zheng, S.; Liu, Y.; Langrock, A.; Wang, C. Selenium@ mesoporous carbon composite with superior lithium and sodium storage capacity. ACS Nano 2013, 7, 8003–8010. [Google Scholar] [CrossRef]
- Liu, J.; Sun, X. Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition. Nanotechnology 2014, 26, 024001. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Liang, L.; Sun, X.; Sun, X.; Wu, C.; Hou, L.; Sun, J.; Yuan, C. Recent progresses and development of advanced atomic layer deposition towards high-performance Li-ion batteries. Nanomaterials 2017, 7, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoops, H.; Donders, M.; Van De Sanden, M.; Notten, P.; Kessels, W. Atomic layer deposition for nanostructured Li-ion batteries. J. Vacuum Sci. Technol. A Vacuum Surfaces Films 2012, 30, 010801. [Google Scholar] [CrossRef] [Green Version]
- Meng, X. Atomic-scale surface modifications and novel electrode designs for high-performance sodium-ion batteries via atomic layer deposition. J. Mater. Chem. A 2017, 5, 10127–10149. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, M.; Xu, R.; Zeng, S.; Yang, H.; Ye, S.; Liu, F.; Wu, X.; Yu, Y. CNT Interwoven Nitrogen and Oxygen Dual-Doped Porous Carbon Nanosheets as Free-Standing Electrodes for High-Performance Na-Se and K-Se Flexible Batteries. Adv. Mater. 2018, 30, 1805234. [Google Scholar] [CrossRef]
- Dong, W.; Chen, H.; Xia, F.; Yu, W.; Song, J.; Wu, S.; Deng, Z.; Hu, Z.-Y.; Hasan, T.; Li, Y. Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Na–Se batteries. J. Mater. Chem. A 2018, 6, 22790–22797. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Denis, Y.; Rogach, A.L. Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity. Nano Energy 2019, 58, 392–398. [Google Scholar] [CrossRef]
- Lee, J.T.; Kim, H.; Nitta, N.; Eom, K.-s.; Lee, D.-C.; Wu, F.; Lin, H.-T.; Zdyrko, B.; Cho, W.I.; Yushin, G. Stabilization of selenium cathodes via in situ formation of protective solid electrolyte layer. J. Mater. Chem. A 2014, 2, 18898–18905. [Google Scholar] [CrossRef]
- Jung, Y.S.; Cavanagh, A.S.; Riley, L.A.; Kang, S.H.; Dillon, A.C.; Groner, M.D.; George, S.M.; Lee, S.H. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Adv. Mater. 2010, 22, 2172–2176. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Piper, D.M.; Gu, M.; Travis, J.J.; George, S.M.; Lee, S.-H.; Genc, A.; Pullan, L.; Liu, J.; Mao, S.X. In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries. ACS Nano 2014, 8, 11816–11823. [Google Scholar] [CrossRef] [PubMed]
Before Cycling | After 100 Cycles | ||||
---|---|---|---|---|---|
Ri (Ω) | RCT (Ω) | Ri (Ω) | RCT (Ω) | RSEI (Ω) | |
Se/CZIF | 3.6 | 85.7 | 3.7 | 4.7 | 16.0 |
Se/CZIF-5 alucone | 2.2 | 52.4 | 3.3 | 2.5 | 6.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboonasr Shiraz, M.H.; Rehl, E.; Kazemian, H.; Liu, J. Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating. Nanomaterials 2021, 11, 1976. https://doi.org/10.3390/nano11081976
Aboonasr Shiraz MH, Rehl E, Kazemian H, Liu J. Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating. Nanomaterials. 2021; 11(8):1976. https://doi.org/10.3390/nano11081976
Chicago/Turabian StyleAboonasr Shiraz, Mohammad Hossein, Erwin Rehl, Hossein Kazemian, and Jian Liu. 2021. "Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating" Nanomaterials 11, no. 8: 1976. https://doi.org/10.3390/nano11081976
APA StyleAboonasr Shiraz, M. H., Rehl, E., Kazemian, H., & Liu, J. (2021). Durable Lithium/Selenium Batteries Enabled by the Integration of MOF-Derived Porous Carbon and Alucone Coating. Nanomaterials, 11(8), 1976. https://doi.org/10.3390/nano11081976