Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review
Abstract
:1. Introduction
2. Green Synthesis of AgNPs
2.1. Bacterial-Mediated Synthesis of AgNPs
2.2. Algal-Mediated Synthesis of AgNPs
2.3. Fungal-Mediated Synthesis of AgNPs
2.4. Plant-Mediated Synthesis of AgNPs
3. Characterization of AgNPs
3.1. UV–Visible Spectroscopy
3.2. Fourier-Transform Infrared (FTIR) Spectroscopy
3.3. X-ray Diffraction (XRD)
3.4. Scanning Electron Microscopy (SEM)
3.5. Transmission Electron Microscopy (TEM)
3.6. Dynamic Light Scattering (DLS)
4. Antimicrobial Activities of AgNPs
4.1. Antibacterial Action of AgNPs
4.2. Antifungal Action of AgNPs
4.3. Antiviral Action of AgNPs
5. Applications of AgNPs
5.1. AgNPs in Agriculture
5.2. Food and AgNPs
5.3. Biomedical Applications
5.4. Environment and AgNPs
6. Cytotoxicity and Safety Issues of AgNPs
7. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shyam, A.; Chandran, S.S.; Bini, G.; Sreelekha, E. Plant mediated synthesis of AgNPs and its applications: An overview. Inorg. Nano Met. Chem. 2020, 1–17. [Google Scholar] [CrossRef]
- Mishra, M.; Dashora, K.; Srivastava, A.; Fasake, V.D.; Nag, R.H. Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicol. Environ. Saf. 2019, 171, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Tehri, N.; Vashishth, A.; Gahlaut, A.; Hooda, V. Biosynthesis, antimicrobial spectra and applications of silver nanoparticles: Current progress and future prospects. Inorg. Nano Met. Chem. 2020, 1–19. [Google Scholar] [CrossRef]
- Aragón, F.H.; Coaquira, J.A.H.; Villegas-Lelovsky, L.; Da Silva, S.W.; Cesar, D.F.; Nagamine, L.C.C.M.; Cohen, R.; Proupin, E.M.; Morais, P.C. Evolution of the doping regimes in the Al-doped SnO2nanoparticles prepared by a polymer precursor method. J. Phys. Condens. Matter 2015, 27, 095301. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014, 4, 3974–3983. [Google Scholar] [CrossRef] [Green Version]
- Tehri, N.; Kaur, R.; Maity, M.; Chauhan, A.; Hooda, V.; Vashishth, A.; Kumar, G. Biosynthesis, characterization, bactericidal and sporicidal activity of silver nanoparticles using the leaves extract of Litchi chinensis. Prep. Biochem. Biotechnol. 2020, 50, 865–873. [Google Scholar] [CrossRef]
- Gherasim, O.; Puiu, R.A.; Bîrcă, A.C.; Burdușel, A.-C.; Grumezescu, A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials 2020, 10, 2318. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gupta, K.; Dixit, S.; Mishra, K.; Srivastava, S. A review on positive and negative impacts of nanotechnology in agriculture. Int. J. Environ. Sci. Technol. 2018, 16, 2175–2184. [Google Scholar] [CrossRef]
- Mikhailova, E.O. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Moradi, F.; Sedaghat, S.; Moradi, O.; Salmanabadi, S.A. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: With an emphasis on medicinal plants. Inorg. Nano Met. Chem. 2020, 51, 133–142. [Google Scholar] [CrossRef]
- Menges, N. The Role of Green Solvents and Catalysts at the Future of Drug Design and of Synthesis. In Green Chemistry; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Henríquez, L.; Alfaro-Aguilar, K.; Ugalde-álvarez, J.; Vega-Fernández, L.; de Oca-Vásquez, G.M.; Vega-Baudrit, J.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef]
- Javed, B.; Ikram, M.; Farooq, F.; Sultana, T.; Mashwani, Z.-U.; Raja, N.I. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: A mechanistic overview. Appl. Microbiol. Biotechnol. 2021, 105, 2261–2275. [Google Scholar] [CrossRef]
- Poulose, S.; Panda, T.; Nair, P.P.; Théodore, T. Biosynthesis of Silver Nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Grasso, G.; Zane, D.; Dragone, R. Microbial Nanotechnology: Challenges and Prospects for Green Biocatalytic Synthesis of Nanoscale Materials for Sensoristic and Biomedical Applications. Nanomaterials 2019, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golmohammadi, H.; Morales-Narváez, E.; Naghdi, T.; Merkoçi, A. Nanocellulose in Sensing and Biosensing. Chem. Mater. 2017, 29, 5426–5446. [Google Scholar] [CrossRef]
- Pourreza, N.; Golmohammadi, H.; Naghdi, T.; Yousefi, H. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens. Bioelectron. 2015, 74, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Iqbal, A.; Ashraf, M.A. Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environ. Sci. Pollut. Res. 2020, 27, 37347–37356. [Google Scholar] [CrossRef]
- Huq, M.A. Biogenic silver nanoparticles synthesized by Lysinibacillus xylanilyticus mahuq-40 to control antibiotic-resistant human pathogens vibrio parahaemolyticus and Salmonella typhimurium. Front. Bioeng. Biotechnol. 2020, 8, 1407. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, J.; Su, W.; Zeng, X.; Liu, X.; Li, W.; Deng, J.; Tang, J. Extracellular Biosynthesis, Characterization and Cytotoxic Effect of Silver Nanoparticles by Streptomyces coelicoflavus KS-3. J. Nanosci. Nanotechnol. 2018, 18, 8133–8141. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, C.R.; Maharana, S.; Mandhata, C.P.; Bishoyi, A.K.; Paidesetty, S.K.; Padhy, R.N. Biogenic silver nanoparticle synthesis with cyanobacterium Chroococcus minutus isolated from Baliharachandi sea-mouth, Odisha, and In Vitro antibacterial activity. Saudi J. Biol. Sci. 2020, 27, 1580–1586. [Google Scholar] [CrossRef]
- Akter, S.; Huq, A. Biologically rapid synthesis of silver nanoparticles by Sphingobium sp. MAH-11T and their antibacterial activity and mechanisms investigation against drug-resistant pathogenic microbes. Artif. Cells Nanomed. Biotechnol. 2020, 48, 672–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allam, N.G.; Ismail, G.A.; El-Gemizy, W.M.; Salem, M.A. Biosynthesis of silver nanoparticles by cell-free extracts from some bacteria species for dye removal from wastewater. Biotechnol. Lett. 2019, 41, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, J.; Mu, D.; Zhang, H.; Liu, Q.; Chen, G. Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120). Green Chem. Lett. Rev. 2021, 14, 189–202. [Google Scholar] [CrossRef]
- Sudarsan, S.; Shankar, M.K.; Motatis, A.K.B.; Shankar, S.; Krishnappa, D.; Mohan, C.; Rangappa, K.; Gupta, V.; Siddaiah, C. Green Synthesis of Silver Nanoparticles by Cytobacillus firmus Isolated from the Stem Bark of Terminalia arjuna and Their Antimicrobial Activity. Biomolecules 2021, 11, 259. [Google Scholar] [CrossRef] [PubMed]
- El-Bendary, M.A.; Abdelraof, M.; Moharam, M.E.; Elmahdy, E.M.; Allam, M.A. Potential of silver nanoparticles synthesized using low active mosquitocidal Lysinibacillus sphaericus as novel antimicrobial agents. Prep. Biochem. Biotechnol. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Barik, S.K.; MubarakAli, D.; Prakash, P.; Pugazhendhi, A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog. 2018, 116, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Elbeshehy, E.K.F.; Elazzazy, A.M.; Aggelis, G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front. Microbiol. 2015, 6, 453. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, R.; Nawaz, K.; Khan, A.K.; Hano, C.; Abbasi, B.H.; Anjum, S. An Overview of the Algae-Mediated Biosynthesis of Nanoparticles and Their Biomedical Applications. Biomolecules 2020, 10, 1498. [Google Scholar] [CrossRef] [PubMed]
- Jena, J.; Pradhan, N.; Nayak, R.R.; Dash, B.P.; Sukla, L.B.; Panda, P.K.; Mishra, B.K. Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis. J. Microbiol. Biotechnol. 2014, 24, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz Öztürk, B. Intracellular and extracellular green synthesis of silver nanoparticles using Desmodesmus sp.: Their antibacterial and antifungal effects. Caryologia 2019, 72, 29–43. [Google Scholar] [CrossRef]
- Senapati, S.; Syed, A.; Moeez, S.; Kumar, A.; Ahmad, A. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater. Lett. 2012, 79, 116–118. [Google Scholar] [CrossRef]
- Merin, D.D.; Prakash, S.; Bhimba, B.V. Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac. J. Trop. Med. 2010, 3, 797–799. [Google Scholar] [CrossRef] [Green Version]
- Losic, D.; Mitchell, J.G.; Voelcker, N. Diatomaceous Lessons in Nanotechnology and Advanced Materials. Adv. Mater. 2009, 21, 2947–2958. [Google Scholar] [CrossRef]
- Aguirre, L.E.; Ouyang, L.; Elfwing, A.; Hedblom, M.; Wulff, A.; Inganäs, O. Diatom frustules protect DNA from ultraviolet light. Sci. Rep. 2018, 8, 5138. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.N.; Paul, D.; Halder, N.; Sengupta, D.; Patra, S.K. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl. Nanosci. 2014, 5, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Khanna, P.; Kaur, A.; Goyal, D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods 2019, 163, 105656. [Google Scholar] [CrossRef]
- El-Rafie, H.; El-Rafie, M.; Zahran, M. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr. Polym. 2013, 96, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Ulagesan, S.; Nam, T.-J.; Choi, Y.-H. Biogenic preparation and characterization of Pyropia yezoensis silver nanoparticles (P.y AgNPs) and their antibacterial activity against Pseudomonas aeruginosa. Bioprocess Biosyst. Eng. 2020, 44, 443–452. [Google Scholar] [CrossRef]
- Moshfegh, A.; Jalali, A.; Salehzadeh, A.; Jozani, A.S. Biological synthesis of silver nanoparticles by cell-free extract of Polysiphonia algae and their anticancer activity against breast cancer MCF-7 cell lines. Micro Nano Lett. 2019, 14, 581–584. [Google Scholar] [CrossRef]
- Sharma, G.; Jasuja, N.D.; Kumar, M.; Ali, M.I. Biological Synthesis of Silver Nanoparticles by Cell-Free Extract of Spirulina platensis. J. Nanotechnol. 2015, 2015, 132675. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, R.; Ezhumalai, G.; Gnanadesigan, M. A green approach for the synthesis of silver nanoparticles by Chlorella vulgaris and its application in photocatalytic dye degradation activity. Environ. Technol. Innov. 2020, 21, 101282. [Google Scholar] [CrossRef]
- Murugesan, S.; Bhuvaneswari, S.; Sivamurugan, V. Green Synthesis, Characterization of Silver Nanoparticles of a Marine Red Alga Spyridia Fusiformis and Their Antibacterial Activity. Int. J. Pharm. Pharm. Sci. 2017, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Elgamouz, A.; Idriss, H.; Nassab, C.; Bihi, A.; Bajou, K.; Hasan, K.; Abu Haija, M.; Patole, S.P. Green Synthesis, Characterization, Antimicrobial, Anti-Cancer, and Optimization of Colorimetric Sensing of Hydrogen Peroxide of Algae Extract Capped Silver Nanoparticles. Nanomaterials 2020, 10, 1861. [Google Scholar] [CrossRef]
- LewisOscar, F.; Nithya, C.; Vismaya, S.; Arunkumar, M.; Pugazhendhi, A.; Nguyen-Tri, P.; Alharbi, S.A.; Alharbi, N.S.; Thajuddin, N. In Vitro analysis of green fabricated silver nanoparticles (AgNPs) against Pseudomonas aeruginosa PA14 biofilm formation, their application on urinary catheter. Prog. Org. Coat. 2020, 151, 106058. [Google Scholar] [CrossRef]
- Berdy, J. Bioactive microbial metabolites: A personal view. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Azmath, P.; Baker, S.; Rakshith, D.; Satish, S. Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm. J. 2016, 24, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.T.; Jameel, J.; Rheman, S.U.A. An Overview: Biological Organisms that Serves as Nanofactories for Metallic Nanoparticles Synthesis and Fungi Being the Most Appropriate. Bioceram. Dev. Appl. 2017, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 2003, 28, 313–318. [Google Scholar] [CrossRef]
- Elamawi, R.M.; Al-Harbi, R.E.; Hendi, A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control 2018, 28, 28. [Google Scholar] [CrossRef] [Green Version]
- Baymiller, M.; Huang, F.; Rogelj, S. Rapid one-step synthesis of gold nanoparticles using the ubiquitous coenzyme NADH. Matters 2017, 3. [Google Scholar] [CrossRef] [Green Version]
- Zomorodian, K.; Pourshahid, S.; Sadatsharifi, A.; Mehryar, P.; Pakshir, K.; Rahimi, M.J.; Monfared, A.A. Biosynthesis and Characterization of Silver Nanoparticles by Aspergillus Species. BioMed Res. Int. 2016, 2016, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ranjani, S.; Ahmed, M.S.; Mohd, A.; Kumar, N.S.; Ruckmani, K.; Hemalatha, S. Synthesis, characterization and applications of endophytic fungal nanoparticles. Inorg. Nano Met. Chem. 2020, 51, 280–287. [Google Scholar] [CrossRef]
- Ammar, H.A.; El Aty, A.A.A.; El Awdan, S.A. Extracellular myco-synthesis of nano-silver using the fermentable yeasts Pichia kudriavzeviiHA-NY2 and Saccharomyces uvarumHA-NY3, and their effective biomedical applications. Bioprocess Biosyst. Eng. 2021, 44, 841–854. [Google Scholar] [CrossRef]
- Aygün, A.; Özdemir, S.; Gülcan, M.; Yalçın, M.S.; Uçar, M.; Şen, F. Characterization and antioxidant-antimicrobial activity of silver nanoparticles synthesized using Punica granatum extract. Int. J. Environ. Sci. Technol. 2021, 1–8. [Google Scholar] [CrossRef]
- Ramos, M.M.; Morais, E.D.S.; Sena, I.D.S.; Lima, A.L.; De Oliveira, F.R.; De Freitas, C.M.; Fernandes, C.P.; De Carvalho, J.C.T.; Ferreira, I.M. Silver nanoparticle from whole cells of the fungi Trichoderma spp. isolated from Brazilian Amazon. Biotechnol. Lett. 2020, 42, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Lv, S.; Tang, J.; Liu, J.; Li, W.; Deng, J.; Deng, Y.; Du, J.; Liu, X.; Zeng, X. Study on bioactive molecules involved in extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1. Mater. Express 2019, 9, 475–483. [Google Scholar] [CrossRef]
- Rodríguez-Serrano, C.; Guzmán-Moreno, J.; Ángeles-Chávez, C.; Rodríguez-González, V.; Ortega-Sigala, J.J.; Ramírez-Santoyo, R.M.; Vidales-Rodríguez, L.E. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS ONE 2020, 15, e0230275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrag, H.M.M.; Mostafa, F.A.A.M.; Mohamed, M.E.; Huseein, E.A.M. Green biosynthesis of silver nanoparticles by Aspergillus niger and its antiamoebic effect against Allovahlkampfia spelaea trophozoite and cyst. Exp. Parasitol. 2020, 219, 108031. [Google Scholar] [CrossRef] [PubMed]
- Aziz, N.; Faraz, M.; Sherwani, M.A.; Fatma, T.; Prasad, R. Illuminating the Anticancerous Efficacy of a New Fungal Chassis for Silver Nanoparticle Synthesis. Front. Chem. 2019, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Alghuthaymi, M.A.; Almoammar, H.; Rai, M.; Said-Galiev, E.; Abd-Elsalam, K.A. Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 2015, 29, 221–236. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Atapour, A.; Amani, A.M.; Dashtaki, A.S.; Babapoor, A.; Arjmand, O. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 2018, 46, S855–S872. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Mehata, M.S. Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Saifullah, A.M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Moradi, F.; Sedaghat, S.; Arab-Salmanabadi, S.; Moradi, O. Biosynthesis of silver-montmorillonite nanocomposites using Ocimum Basilicum and Teucrium Polium; A comparative study. Mater. Res. Express 2019, 6, 125008. [Google Scholar] [CrossRef]
- Ghramh, H.A.; Ibrahim, E.H.; Kilnay, M.; Ahmad, Z.; Alhag, S.K.; Khan, K.A.; Taha, R.; Asiri, F.M. Silver Nanoparticle Production by Ruta graveolens and Testing Its Safety, Bioactivity, Immune Modulation, Anticancer, and Insecticidal Potentials. Bioinorg. Chem. Appl. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Palithya, S.; Gaddam, S.A.; Kotakadi, V.S.; Penchalaneni, J.; Challagundla, V.N. Biosynthesis of silver nanoparticles using leaf extract of Decaschistia crotonifolia and its antibacterial, antioxidant, and catalytic applications. Green Chem. Lett. Rev. 2021, 14, 137–152. [Google Scholar] [CrossRef]
- Singh, R.; Hano, C.; Nath, G.; Sharma, B. Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and antimicrobial activity against human pathogenic bacteria. Biomolecules 2021, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.E.; Al-Qahtani, A.; Al-Mutairi, A.; Al-Shamri, B.; Aabed, K.F. Antibacterial and Cytotoxic Potential of Biosynthesized Silver Nanoparticles by Some Plant Extracts. Nanomaterials 2018, 8, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, H.; Kumar, S.V.; RajeshKumar, S. Antidiabetic effect of silver nanoparticles synthesized using lemongrass (Cymbopogon Citratus) through conventional heating and microwave irradiation approach. J. Microbiol. Biotechnol. Food Sci. 2018, 7, 371–376. [Google Scholar] [CrossRef]
- Al-Otibi, F.; Al-Ahaidib, R.A.; Alharbi, R.I.; Al-Otaibi, R.M.; Albasher, G. Antimicrobial Potential of Biosynthesized Silver Nanoparticles by Aaronsohnia factorovskyi Extract. Molecules 2020, 26, 130. [Google Scholar] [CrossRef]
- Alghoraibi, I.; Soukkarieh, C.; Zein, R.; Alahmad, A.; Walter, J.-G.; Daghestani, M. Aqueous extract of Eucalyptus camaldulensis leaves as reducing and capping agent in biosynthesis of silver nanoparticles. Inorg. Nano Met. Chem. 2020, 50, 895–902. [Google Scholar] [CrossRef]
- Raj, S.; Singh, H.; Trivedi, R.; Soni, V. Biogenic synthesis of AgNPs employing Terminalia arjuna leaf extract and its efficacy towards catalytic degradation of organic dyes. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Panja, S.; Choudhuri, I.; Khanra, K.; Pati, B.; Bhattacharyya, N. Biological and Photocatalytic Activity of Silver Nanoparticle Synthesized from Ehretia laevis Roxb. Leaves Extract. Nano Biomed. Eng. 2020, 12, 104–113. [Google Scholar] [CrossRef]
- Nilavukkarasi, M.; Vijayakumar, S.; Kumar, S.P. Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and anti proliferation efficiency. Mater. Sci. Energy Technol. 2020, 3, 371–376. [Google Scholar] [CrossRef]
- Hamidi, A.; Yazdi, M.E.T.; Amiri, M.S.; Hosseini, H.A.; Darroudi, M. Biological synthesis of silver nanoparticles in Tribulus terrestris L. extract and evaluation of their photocatalyst, antibacterial, and cytotoxicity effects. Res. Chem. Intermed. 2019, 45, 2915–2925. [Google Scholar] [CrossRef]
- Parvathiraja, C.; Shailajha, S.; Shanavas, S.; Gurung, J. Biosynthesis of silver nanoparticles by Cyperus pangorei and its potential in structural, optical and catalytic dye degradation. Appl. Nanosci. 2020, 11, 477–491. [Google Scholar] [CrossRef]
- Çalhan, S.D.; Gündoğan, M. Biosynthesis of silver nanoparticles using Onosma sericeum Willd. and evaluation of their catalytic properties and antibacterial and cytotoxic activity. Turk. J. Chem. 2020, 44, 1587–1600. [Google Scholar] [CrossRef] [PubMed]
- Chandirika, J.U.; Annadurai, G. Biosynthesis and characterization of silver nanoparticles using leaf extract Abutilon indicum. Glob. J. Biotechnol. Biochem. 2018, 13, 7–11. [Google Scholar] [CrossRef]
- Rasool, S.; Raza, M.A.; Manzoor, F.; Kanwal, Z.; Riaz, S.; Iqbal, M.J.; Naseem, S. Biosynthesis, characterization and anti-dengue vector activity of silver nanoparticles prepared from Azadirachta indica and Citrullus colocynthis. R. Soc. Open Sci. 2020, 7, 200540. [Google Scholar] [CrossRef] [PubMed]
- Siraj, M.; Shah, Z.A.; Ullah, S.; Bibi, H.; Suleman, M.; Zia, A.; Masood, T.; Iqbal, Z.; Iqbal, M. Biosynthesized silver nanoparticles from shoot and seed extracts of Asphodelus tenufolius for heavy metal sensing. Science 2020, 46, 697. [Google Scholar] [CrossRef]
- Aravind, M.; Ahmad, A.; Ahmad, I.; Amalanathan, M.; Naseem, K.; Mary, S.M.M.; Parvathiraja, C.; Hussain, S.; Algarni, T.S.; Pervaiz, M.; et al. Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J. Environ. Chem. Eng. 2020, 9, 104877. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Shin, H.-S. Facile green biosynthesis of silver nanoparticles using Pisum sativum L. outer peel aqueous extract and its antidiabetic, cytotoxicity, antioxidant, and antibacterial activity. Int. J. Nanomed. 2019, 14, 6679–6690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizi, M.; Sedaghat, S.; Tahvildari, K.; Derakhshi, P.; Ghaemi, A. Green biosynthesis of silver nanoparticles with Eryngium caucasicum Trautv aqueous extract. Inorg. Nano Met. Chem. 2020, 50, 429–436. [Google Scholar] [CrossRef]
- Das, B.; De, A.; Podder, S.; Das, S.; Ghosh, C.K.; Samanta, A. Green biosynthesis of silver nanoparticles using Dregea volubilis flowers: Characterization and evaluation of antioxidant, antidiabetic and antibacterial activity. Inorg. Nano Met. Chem. 2020, 51, 1066–1079. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Iqbal, H.; Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids Surf. B Biointerfaces 2017, 158, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Kanniah, P.; Radhamani, J.; Chelliah, P.; Muthusamy, N.; Balasingh, E.J.J.S.; Thangapandi, J.R.; Balakrishnan, S.; Shanmugam, R. Green Synthesis of Multifaceted Silver Nanoparticles Using the Flower Extract of Aerva lanata and Evaluation of Its Biological and Environmental Applications. ChemistrySelect 2020, 5, 2322–2331. [Google Scholar] [CrossRef]
- Mehwish, H.M.; Rajoka, M.S.R.; Xiong, Y.; Cai, H.; Aadil, R.M.; Mahmood, Q.; He, Z.; Zhu, Q. Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. J. Environ. Chem. Eng. 2021, 9, 105290. [Google Scholar] [CrossRef]
- Ekennia, A.C.; Uduagwu, D.N.; Nwaji, N.N.; Olowu, O.J.; Nwanji, O.L.; Ejimofor, M.; Sonde, C.U.; Oje, O.O.; Igwe, D.O. Green synthesis of silver nanoparticles using leaf extract of Euphorbia sanguine: An In Vitro study of its photocatalytic and melanogenesis inhibition activity. Inorg. Nano Met. Chem. 2021, 1–9. [Google Scholar] [CrossRef]
- Parthiban, E.; Manivannan, N.; Ramanibai, R.; Mathivanan, N. Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol. Rep. 2018, 21, e00297. [Google Scholar] [CrossRef]
- Jalilian, F.; Chahardoli, A.; Sadrjavadi, K.; Fattahi, A.; Shokoohinia, Y. Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv. Powder Technol. 2020, 31, 1323–1332. [Google Scholar] [CrossRef]
- Gupta, S.D.; Kohli, P. LED Exposure Modulates the Biosynthesis of Silver Nanoparticles from Root Tuber Extract of Chlorophytum borivilianum and their Phytotoxicty. J. Clust. Sci. 2020, 1–14. [Google Scholar] [CrossRef]
- Jahan, I.; Erci, F.; Isildak, I. Microwave-Assisted Green Synthesis of Non-Cytotoxic Silver Nanoparticles Using the Aqueous Extract of Rosa santana (rose) Petals and Their Antimicrobial Activity. Anal. Lett. 2019, 52, 1860–1873. [Google Scholar] [CrossRef]
- Chandhirasekar, K.; Thendralmanikandan, A.; Thangavelu, P.; Nguyen, B.-S.; Nguyen, T.-A.; Sivashanmugan, K.; Nareshkumar, A.; Nguyen, V.-H. Plant-extract-assisted green synthesis and its larvicidal activities of silver nanoparticles using leaf extract of Citrus medica, Tagetes lemmonii, and Tarenna asiatica. Mater. Lett. 2020, 287, 129265. [Google Scholar] [CrossRef]
- Hamedi, S.; Shojaosadati, S.A. Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: Evaluation of their biological and catalytic activities. Polyhedron 2019, 171, 172–180. [Google Scholar] [CrossRef]
- Huang, F.; Long, Y.; Liang, Q.; Purushotham, B.; Swamy, M.K.; Duan, Y. Safed Musli (Chlorophytum borivilianum L.) Callus-Mediated Biosynthesis of Silver Nanoparticles and Evaluation of their Antimicrobial Activity and Cytotoxicity against Human Colon Cancer Cells. J. Nanomater. 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Nayaka, S.; Bhat, M.P.; Chakraborty, B.; Pallavi, S.S.; Airodagi, D.; Muthuraj, R.; Halaswamy, H.M.; Dhanyakumara, S.B.; Shashiraj, K.N.; Kupaneshi, K.N.S.A.C. Seed Extract-mediated Synthesis of Silver Nanoparticles from Putranjiva roxburghii Wall., Phytochemical Characterization, Antibacterial Activity and Anticancer Activity Against MCF-7 Cell Line. Indian J. Pharm. Sci. 2020, 82, 260–269. [Google Scholar] [CrossRef]
- Azhar, N.A.; Ghozali, S.Z.; Abu Bakar, S.A.; Lim, V.; Ahmad, N.H. Suppressing growth, migration, and invasion of human hepatocellular carcinoma HepG2 cells by Catharanthus roseus-silver nanoparticles. Toxicol. Vitr. 2020, 67, 104910. [Google Scholar] [CrossRef] [PubMed]
- Vanti, G.L.; Kurjogi, M.; Basavesha, K.N.; Teradal, N.L.; Masaphy, S.; Nargund, V.B. Synthesis and antibacterial activity of Solanum torvum mediated silver nanoparticle against Xanthomonas axonopodis pv. punicae and Ralstonia solanacearum. J. Biotechnol. 2020, 309, 20–28. [Google Scholar] [CrossRef]
- Shah, Z.; Hassan, S.; Shaheen, K.; Khan, S.A.; Gul, T.; Anwar, Y.; Al-Shaeri, M.A.; Khan, M.; Khan, R.; Haleem, M.A.; et al. Synthesis of AgNPs coated with secondary metabolites of Acacia nilotica: An efficient antimicrobial and detoxification agent for environmental toxic organic pollutants. Mater. Sci. Eng. C 2020, 111, 110829. [Google Scholar] [CrossRef] [PubMed]
- Brito, T.K.; Viana, R.L.S.; Moreno, C.J.G.; Barbosa, J.D.S.; Júnior, F.L.D.S.; de Medeiros, M.J.C.; Melo-Silveira, R.F.; Almeida-Lima, J.; Pontes, D.D.L.; Silva, M.S.; et al. Synthesis of Silver Nanoparticle Employing Corn Cob Xylan as a Reducing Agent with Anti-Trypanosoma cruzi Activity. Int. J. Nanomed. 2020, 15, 965–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sankarganesh, P.; Kumar, A.G.; Parthasarathy, V.; Joseph, B.; Priyadharsini, G.; Anbarasan, R. Synthesis of Murraya koenigii Mediated Silver Nanoparticles and Their In Vitro and In Vivo Biological Potential. J. Inorg. Organomet. Polym. Mater. 2021, 1–9. [Google Scholar] [CrossRef]
- Vijayakumar, S.; Divya, M.; Vaseeharan, B.; Chen, J.; Biruntha, M.; Silva, L.P.; Durán-Lara, E.F.; Shreema, K.; Ranjan, S.; Dasgupta, N. Biological Compound Capping of Silver Nanoparticle with the Seed Extracts of Blackcumin (Nigella sativa): A Potential Antibacterial, Antidiabetic, Anti-inflammatory, and Antioxidant. J. Inorg. Organomet. Polym. Mater. 2020, 31, 624–635. [Google Scholar] [CrossRef]
- Ahmad, S.; Tauseef, I.; Haleem, K.S.; Khan, K.; Shahzad, M.; Ali, M.; Sultan, F. Synthesis of silver nanoparticles using leaves of Catharanthus roseus and their antimicrobial activity. Appl. Nanosci. 2019, 10, 4459–4464. [Google Scholar] [CrossRef]
- Gurunathan, S.; Han, J.W.; Kwon, D.-N.; Kim, J.-H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett. 2014, 9, 373. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, R.H. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106, 874–881. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nat. Cell Biol. 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Haes, A.; Van Duyne, R.P. A unified view of propagating and localized surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2004, 379, 920–930. [Google Scholar] [CrossRef]
- Petryayeva, E.; Krull, U.J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Liz-Marzán, L.M. Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir 2006, 22, 32–41. [Google Scholar] [CrossRef]
- Jensen, T.R.; Malinsky, M.D.; Haynes, C.; Van Duyne, R.P. Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. J. Phys. Chem. B 2000, 104, 10549–10556. [Google Scholar] [CrossRef]
- Yguerabide, J.; Yguerabide, E.E. Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications. Anal. Biochem. 1998, 262, 157–176. [Google Scholar] [CrossRef]
- Choi, Y.; Kang, T.; Lee, L.P. Plasmon Resonance Energy Transfer (PRET)-based Molecular Imaging of Cytochromecin Living Cells. Nano Lett. 2008, 9, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Wen, G.; Luo, Y.; Zhang, X.; Liu, Q.; Liang, A. A new silver nanorod SPR probe for detection of trace benzoyl peroxide. Sci. Rep. 2014, 4, 5323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, X.; Henriksen-Lacey, M.; de Aberasturi, D.J.; Sánchez-Iglesias, A.; Liz-Marzán, L.M. Shielded Silver Nanorods for Bioapplications. Chem. Mater. 2020, 32, 5879–5889. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K.; Ashokkumar, T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J. Environ. Chem. Eng. 2017, 5, 4866–4883. [Google Scholar] [CrossRef]
- Henglein, A. Physicochemical properties of small metal particles in solution: Microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 1993, 97, 5457–5471. [Google Scholar] [CrossRef]
- Sastry, M.; Mayya, K.; Bandyopadhyay, K. pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf. A Physicochem. Eng. Asp. 1997, 127, 221–228. [Google Scholar] [CrossRef]
- Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef] [PubMed]
- Albert, H.M.; Lohitha, T.; Alagarsamy, K.; Gonsago, C.; Vishwakarma, V. Performance of ZnSO4 doped CeO2 nanoparticles and their antibacterial mechanism. Mater. Today Proc. 2021. [Google Scholar] [CrossRef]
- Akintelu, S.A.; Bo, Y.; Folorunso, A.S. A Review on Synthesis, Optimization, Mechanism, Characterization, and Antibacterial Application of Silver Nanoparticles Synthesized from Plants. J. Chem. 2020, 2020, 3189043. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Bharath, L.V. Mechanism of plant-mediated synthesis of silver nanoparticles—A review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact. 2017, 273, 219–227. [Google Scholar] [CrossRef]
- Bhambure, R.; Bule, M.; Shaligram, N.; Kamat, M.; Singhal, R. Extracellular Biosynthesis of Gold Nanoparticles using Aspergillus niger—Its Characterization and Stability. Chem. Eng. Technol. 2009, 32, 1036–1041. [Google Scholar] [CrossRef]
- Alamdari, S.; Ghamsari, M.S.; Lee, C.; Han, W.; Park, H.-H.; Tafreshi, M.J.; Afarideh, H.; Ara, M.H.M. Preparation and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. Appl. Sci. 2020, 10, 3620. [Google Scholar] [CrossRef]
- Waseda, Y.; Matsubara, E.; Shinoda, K. X-ray Diffraction Crystallography; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Das, R.; Nath, S.S.; Chakdar, D.; Gope, G.; Bhattacharjee, R. Preparation of silver nanoparticles and their characterization. J. Nanotechnol. 2009, 1–6. [Google Scholar] [CrossRef]
- Cao, G.; Wang, Y. Nanostructures and Nanomaterials; World Scientific Series in Nanoscience and Nanotechnology; World Scientific: Singapore, 2011; Volume 2, ISBN 978-981-4322-50-8. [Google Scholar]
- Chapman, H.N.; Fromme, P.; Barty, A.; White, T.A.; Kirian, R.; Aquila, A.; Hunter, M.S.; Schulz, J.; DePonte, D.P.; Weierstall, U.; et al. Femtosecond X-ray protein nanocrystallography. Nat. Cell Biol. 2011, 470, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Pawley, J. The Development of Field-Emission Scanning Electron Microscopy for Imaging Biological Surfaces. Scanning 1997, 19, 324–336. [Google Scholar] [PubMed]
- Yao, H.; Kimura, K. Field emission scanning electron microscopy for structural characterization of 3d gold nanoparticle superlattices. In Modern Research and Educational Topics in Microscopy; Méndez-Vilas, A., Díaz, J., Eds.; Formatex Research Center: Badajoz, Spain, 2007; pp. 568–575. [Google Scholar]
- Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 2015, 6, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Pasricha, R.; Bala, T.; Biradar, A.V.; Umbarkar, S.; Sastry, M. Synthesis of Catalytically Active Porous Platinum Nanoparticles by Transmetallation Reaction and Proposition of the Mechanism. Small 2009, 5, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Asoro, M.A.; Kovar, D.; Ferreira, P.J. In Situ Transmission Electron Microscopy Observations of Sublimation in Silver Nanoparticles. ACS Nano 2013, 7, 7844–7852. [Google Scholar] [CrossRef]
- Lin, P.-C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014, 32, 711–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.B.; Dobrovolskaia, M.A.; Patri, A.K.; McNeil, S.E. Characterization of nanoparticles for therapeutics. Nanomedicine 2007, 2, 789–803. [Google Scholar] [CrossRef]
- Lim, J.; Yeap, S.P.; Che, H.X.; Low, S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.-H.; Lee, S.; Hwang, Y.S. Characterization of Silver Nanoparticles under Environmentally Relevant Conditions Using Asymmetrical Flow Field-Flow Fractionation (AF4). PLoS ONE 2015, 10, e0143149. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, E.; Soliwoda, K.; Kądzioła-Długołęcka, K.; Tkacz-Szczesna, B.; Celichowski, G.; Cichomski, M.; Szmaja, W.; Grobelny, J. Detection Limits of DLS and UV-Vis Spectroscopy in Characterization of Polydisperse Nanoparticles Colloids. J. Nanomater. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Meva, F.E.; Ntoumba, A.A.; Kedi, P.B.E.; Tchoumbi, E.; Schmitz, A.; Schmolke, L.; Klopotowski, M.; Moll, B.; Kökcam, D.; Mpondo, E.A.M.; et al. Silver and palladium nanoparticles produced using a plant extract as reducing agent, stabilized with an ionic liquid: Sizing by X-ray powder diffraction and dynamic light scattering. J. Mater. Res. Technol. 2019, 8, 1991–2000. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Salomoni, R.; Léo, P.; Montemor, A.; Rinaldi, B.; Rodrigues, M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 2017, 10, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, W.; Yung, B.; Huang, P.; Chen, X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem. Rev. 2017, 117, 13566–13638. [Google Scholar] [CrossRef]
- Supraja, N.; Prasad, T.; Soundariya, M.; Babujanarthanam, R. Synthesis, characterization and dose dependent antimicrobial and anti-cancerous activity of phycogenic silver nanoparticles against human hepatic carcinoma (HepG2) cell line. AIMS Environ. Sci. 2016, 3, 425–440. [Google Scholar] [CrossRef]
- Das, C.A.; Kumar, V.G.; Dhas, T.S.; Karthick, V.; Govindaraju, K.; Joselin, J.M.; Baalamurugan, J. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatal. Agric. Biotechnol. 2020, 27, 101593. [Google Scholar] [CrossRef]
- Prasher, P.; Singh, M.; Mudila, H. Oligodynamic Effect of Silver Nanoparticles: A Review. BioNanoScience 2018, 8, 951–962. [Google Scholar] [CrossRef]
- Annamalai, J.; Nallamuthu, T. Green synthesis of silver nanoparticles: Characterization and determination of antibacterial potency. Appl. Nanosci. 2015, 6, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Esmaeillou, M.; Zarrini, G.; Rezaee, M.A.; Mojarrad, J.S.; Bahadori, A. Vancomycin Capped with Silver Nanoparticles as an Antibacterial Agent against Multi-Drug Resistance Bacteria. Adv. Pharm. Bull. 2017, 7, 479–483. [Google Scholar] [CrossRef] [Green Version]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef]
- Tiwari, P.M.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials 2011, 1, 31–63. [Google Scholar] [CrossRef]
- El Zowalaty, M.; Ibrahim, N.A.; Salama, M.; Shameli, K.; Usman, M.; Zainuddin, N. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomed. 2013, 8, 4467–4479. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.-H.; Park, J.-E.; Osaka, T.; Park, S.-G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 2005, 51, 956–960. [Google Scholar] [CrossRef]
- Surwade, P.; Ghildyal, C.; Weikel, C.; Luxton, T.; Peloquin, D.; Fan, X.; Shah, V. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). J. Antibiot. 2018, 72, 50–53. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Health Mater. 2018, 7, e1701503. [Google Scholar] [CrossRef] [PubMed]
- Yuwen, L.; Sun, Y.-T.; Tan, G.-L.; Xiu, W.-J.; Zhang, Y.; Weng, L.; Teng, Z.; Wang, L.-H. MoS2@polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of Staphylococcus aureus biofilms and wound infection. Nanoscale 2018, 10, 16711–16720. [Google Scholar] [CrossRef]
- Deng, H.; McShan, D.; Zhang, Y.; Sinha, S.S.; Arslan, Z.; Ray, P.C.; Yu, H. Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Antibiotics. Environ. Sci. Technol. 2016, 50, 8840–8848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saratale, G.D.; Saratale, R.G.; Benelli, G.; Kumar, G.; Pugazhendhi, A.; Kim, D.-S.; Shin, H.-S. Anti-diabetic Potential of Silver Nanoparticles Synthesized with Argyreia nervosa Leaf Extract High Synergistic Antibacterial Activity with Standard Antibiotics against Foodborne Bacteria. J. Clust. Sci. 2017, 28, 1709–1727. [Google Scholar] [CrossRef]
- Hwang, I.-S.; Hwang, J.H.; Choi, H.; Kim, K.-J.; Lee, D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J. Med. Microbiol. 2012, 61, 1719–1726. [Google Scholar] [CrossRef] [Green Version]
- Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 2018, 13, 8013–8024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramkumar, V.S.; Pugazhendhi, A.; Gopalakrishnan, K.; Sivagurunathan, P.; Saratale, G.D.; Dung, T.N.B.; Kannapiran, E. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol. Rep. 2017, 14, 1–7. [Google Scholar] [CrossRef]
- Durán, N.; Nakazato, G.; Seabra, A.B. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: An overview and comments. Appl. Microbiol. Biotechnol. 2016, 100, 6555–6570. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, L.; Zhou, X.; Yu, Y.; Li, Z.; Zuo, D.; Wu, Y. Silver nanoparticles induce protective autophagy via Ca2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology 2019, 13, 369–391. [Google Scholar] [CrossRef]
- Noronha, V.; Paula, A.J.; Durán, G.; Galembeck, A.; Cogo-Muller, K.; Franz-Montan, M.; Durán, N. Silver nanoparticles in dentistry. Dent. Mater. 2017, 33, 1110–1126. [Google Scholar] [CrossRef]
- Shanmuganathan, R.; MubarakAli, D.; Prabakar, D.; Muthukumar, H.; Thajuddin, N.; Kumar, S.; Pugazhendhi, A. An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: Green approach. Environ. Sci. Pollut. Res. 2017, 25, 10362–10370. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, S.; Najafabadi, F.J.; Zarepour, A.; Zarrabi, A. Is Astragalus gossypinus Honey a Natural Antibacterial and Cytotoxic Agent? An Investigation on A. gossypinus Honey Biological Activity and Its Green Synthesized Silver Nanoparticles. BioNanoScience 2019, 9, 603–610. [Google Scholar] [CrossRef]
- Jacob, J.M.; John, M.S.; Jacob, A.; Abitha, P.; Kumar, S.S.; Rajan, R.; Natarajan, S.; Pugazhendhi, A. Bactericidal coating of paper towels via sustainable biosynthesis of silver nanoparticles using Ocimum sanctum leaf extract. Mater. Res. Express 2018, 6, 045401. [Google Scholar] [CrossRef]
- Meikle, T.G.; Dyett, B.P.; Strachan, J.B.; White, J.; Drummond, C.J.; Conn, C.E. Preparation, Characterization, and Antimicrobial Activity of Cubosome Encapsulated Metal Nanocrystals. ACS Appl. Mater. Interfaces 2020, 12, 6944–6954. [Google Scholar] [CrossRef]
- Saravanan, M.; Arokiyaraj, S.; Lakshmi, T.; Pugazhendhi, A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb. Pathog. 2018, 117, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Yu, O.Y.; Zhao, I.S.; Mei, M.L.; Li, Q.-L.; Tang, J.; Chu, C.-H. Developing biocompatible silver nanoparticles using epigallocatechin gallate for dental use. Arch. Oral Biol. 2019, 102, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Pugazhendhi, A.; Prabakar, D.; Jacob, J.M.; Karuppusamy, I.; Saratale, R.G. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb. Pathog. 2018, 114, 41–45. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Sharmin, S.; Rahaman, M.; Sarkar, C.; Atolani, O.; Islam, M.T.; Adeyemi, O.S. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 2021, 7, e06456. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Szymczak, M.; Maciejewska, M.; Laskowska, M.; Ostaszewski, R.; Skiba, G.; Franiak-Pietryga, I. All That Glitters Is Not Silver—A New Look at Microbiological and Medical Applications of Silver Nanoparticles. Int. J. Mol. Sci. 2021, 22, 854. [Google Scholar] [CrossRef]
- Panáček, A.; Kolář, M.; Večeřová, R.; Prucek, R.; Soukupová, J.; Krystof, V.; Hamal, P.; Zboril, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 2009, 30, 6333–6340. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Khan, A.U.; Alam, M.J.; Park, S.; Alam, M. Biosynthesis of silver nanoparticles and its application against phytopathogenic bacterium and fungus. Int. J. Environ. Anal. Chem. 2019, 100, 1390–1401. [Google Scholar] [CrossRef]
- Elgorban, A.M.; El-Samawaty, A.E.-R.M.; Yassin, M.A.; Sayed, S.R.; Adil, S.; Elhindi, K.M.; Bakri, M.; Khan, M. Antifungal silver nanoparticles: Synthesis, characterization and biological evaluation. Biotechnol. Biotechnol. Equip. 2015, 30, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.-K.; Kim, B.H.; Jung, G. Antifungal Activity of Silver Ions and Nanoparticles on Phytopathogenic Fungi. Plant Dis. 2009, 93, 1037–1043. [Google Scholar] [CrossRef] [Green Version]
- Koduru, J.R.; Kailasa, S.K.; Bhamore, J.R.; Kim, K.-H.; Dutta, T.; Vellingiri, K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Adv. Colloid Interface Sci. 2018, 256, 326–339. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=CjwKCAjwhMmEBhBwEiwAXwFoETN8HYVlB-WOMiWVh8S0XnewihrOxP2vCwiVUP36e_7g1ha5xb-mFxoCl-QQAvD_BwE (accessed on 5 May 2021).
- Salleh, A.; Naomi, R.; Utami, N.D.; Mohammad, A.W.; Mahmoudi, E.; Mustafa, N.; Fauzi, M.B. The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials 2020, 10, 1566. [Google Scholar] [CrossRef]
- Lv, X.; Wang, P.; Bai, R.; Cong, Y.; Suo, S.; Ren, X.; Chen, C. Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. Biomaterials 2014, 35, 4195–4203. [Google Scholar] [CrossRef] [PubMed]
- Azarudeen, R.M.S.T.; Govindarajan, M.; Amsath, A.; Muthukumaran, U.; Benelli, G. Single-Step Biofabrication of Silver Nanocrystals Using Naregamia alata: A Cost Effective and Eco-Friendly Control Tool in the Fight against Malaria, Zika Virus and St. Louis Encephalitis Mosquito Vectors. J. Clust. Sci. 2016, 28, 179–203. [Google Scholar] [CrossRef] [Green Version]
- Balagna, C.; Perero, S.; Percivalle, E.; Nepita, E.V.; Ferraris, M. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceram. 2020, 1, 100006. [Google Scholar] [CrossRef]
- Galdiero, S.; Rai, M.; Gade, A.; Falanga, A.; Incoronato, N.; Russo, L.; Galdiero, M.; Gaikwad, S.; Ingle, A. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomed. 2013, 8, 4303–4314. [Google Scholar] [CrossRef] [Green Version]
- Dhanasezhian, A.; Srivani, S.; Govindaraju, K.; Parija, P.; Sasikala, S.; Ramesh Kumar, M.R. Anti-herpes simplex virus (HSV-1 and HSV-2) activity of biogenic gold and silver nanoparticles using seaweed Sargassum wightii. Indian J. Geo-Mar. Sci. 2019, 48, 1252–1257. [Google Scholar]
- Morris, D.; Ansar, M.; Speshock, J.; Ivanciuc, T.; Qu, Y.; Casola, A.; Garofalo, R.P. Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection. Viruses 2019, 11, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayorga, J.L.C.; Randazzo, W.; Fabra, M.J.; Lagaron, J.; Aznar, R.; Sánchez, G. Antiviral properties of silver nanoparticles against norovirus surrogates and their efficacy in coated polyhydroxyalkanoates systems. LWT 2017, 79, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Lin, Z.; Lui, V.C.; Wong, K.K.; Tam, P.K.; Lee, P.; Lok, C.N.; Lamb, J.R.; Chen, Y.; Xia, H. Silver nanoparticle treatment ameliorates biliary atresia syndrome in rhesus rotavirus inoculated mice. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Orlowski, P.; Tomaszewska, E.; Gniadek, M.; Bąska, P.; Nowakowska, J.; Sokołowska, J.; Nowak-Życzyńska, Z.; Donten, M.; Celichowski, G.; Grobelny, J.; et al. Tannic Acid Modified Silver Nanoparticles Show Antiviral Activity in Herpes Simplex Virus Type 2 Infection. PLoS ONE 2014, 9, e104113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orłowski, P.; Kowalczyk, A.; Tomaszewska, E.; Soliwoda, K.; Węgrzyn, A.; Grzesiak, J.; Celichowski, G.; Grobelny, J.; Eriksson, K.; Krzyzowska, M. Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses 2018, 10, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, A.T.; Alshehri, M.A.; Alanazi, N.A.; Panneerselvam, C.; Trivedi, S.; Maggi, F.; Sut, S.; Dall'Acqua, S. Phytochemical analysis of Rhazya stricta extract and its use in fabrication of silver nanoparticles effective against mosquito vectors and microbial pathogens. Sci. Total Environ. 2019, 700, 134443. [Google Scholar] [CrossRef]
- Kumar, S.D.; Singaravelu, G.; Ajithkumar, S.; Murugan, K.; Nicoletti, M.; Benelli, G. Mangrove-Mediated Green Synthesis of Silver Nanoparticles with High HIV-1 Reverse Transcriptase Inhibitory Potential. J. Clust. Sci. 2016, 28, 359–367. [Google Scholar] [CrossRef]
- Lin, Z.; Li, Y.; Guo, M.; Xu, T.; Wang, C.; Zhao, M.; Wang, H.; Chen, T.; Zhu, B. The inhibition of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Adv. 2017, 7, 742–750. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Lin, Z.; Zhao, M.; Xu, T.; Wang, C.; Yinghua, L.; Wang, H.; Xia, H.M.; Zhu, B. Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways. ACS Appl. Mater. Interfaces 2016, 8, 24385–24393. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.X.; Li, C.M.; Huang, C.Z. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection. Nanoscale 2016, 8, 3040–3048. [Google Scholar] [CrossRef] [PubMed]
- Haggag, E.G.; Elshamy, A.M.; Rabeh, M.A.; Gabr, N.M.; Salem, M.; Youssif, K.A.; Samir, A.; Bin Muhsinah, A.; Alsayari, A.; Abdelmohsen, U.R. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int. J. Nanomed. 2019, 14, 6217–6229. [Google Scholar] [CrossRef] [Green Version]
- Elumalai, D.; Hemavathi, M.; Deepaa, C.V.; Kaleena, P.K. Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol. Control 2017, 2, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Elechiguerra, J.L.; Burt, J.L.; Morones-Ramirez, J.R.; Camacho-Bragado, A.; Gao, X.; Lara, H.H.; Yacaman, M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology 2005, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Guzman, D.; Le Guen, P.; Villeret, B.; Sola, N.; Le Borgne, R.; Guyard, A.; Kemmel, A.; Crestani, B.; Sallenave, J.-M.; Garcia-Verdugo, I. Silver nanoparticle-adjuvanted vaccine protects against lethal influenza infection through inducing BALT and IgA-mediated mucosal immunity. Biomaterials 2019, 217, 119308. [Google Scholar] [CrossRef] [PubMed]
- El-Mohamady, R.S.; Ghattas, T.; Zawrah, M.; El-Hafeiz, Y.A. Inhibitory effect of silver nanoparticles on bovine herpesvirus-1. Int. J. Vet. Sci. Med. 2018, 6, 296–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etemadzade, M.; Ghamarypour, A.; Zabihollahi, R.; Shabbak, G.; Shirazi, M.; Sahebjamee, H.; Vaziri, A.Z.; Assadi, A.; Ardestani, M.S.; Shandiz, S.A.S.; et al. Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses. Asian Pac. J. Trop. Dis. 2016, 6, 854–858. [Google Scholar] [CrossRef]
- Tremiliosi, G.C.; Simoes, L.G.P.; Minozzi, D.T.; Santos, R.I.; Vilela, D.C.B.; Durigon, E.L.; Machado, R.R.G.; Medina, D.S.; Ribeiro, L.K.; Rosa, I.L.V.; et al. Ag nanoparticles-based antimicrobial polycotton fabrics to prevent the transmission and spread of SARS-CoV-2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Mori, Y.; Ono, T.; Miyahira, Y.; Nguyen, V.Q.; Matsui, T.; Ishihara, M. Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett. 2013, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Sujitha, V.; Murugan, K.; Paulpandi, M.; Panneerselvam, C.; Suresh, U.; Roni, M.; Nicoletti, M.; Higuchi, A.; Madhiyazhagan, P.; Subramaniam, J.; et al. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol. Res. 2015, 114, 3315–3325. [Google Scholar] [CrossRef]
- Sharma, V.; Kaushik, S.; Pandit, P.; Dhull, D.; Yadav, J.P.; Kaushik, S. Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus. Appl. Microbiol. Biotechnol. 2018, 103, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hulswit, R.; Kenney, S.P.; Widjaja, I.; Jung, K.; Alhamo, M.A.; van Dieren, B.; van Kuppeveld, F.J.M.; Saif, L.J.; Bosch, B.-J. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc. Natl. Acad. Sci. USA 2018, 115, E5135–E5143. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nat. Cell Biol. 2005, 436, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Jeremiah, S.S.; Miyakawa, K.; Morita, T.; Yamaoka, Y.; Ryo, A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun. 2020, 533, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Alafeef, M.; Moitra, P.; Pan, D. Nano-enabled sensing approaches for pathogenic bacterial detection. Biosens. Bioelectron. 2020, 165, 112276. [Google Scholar] [CrossRef]
- Li, Y.; Lin, Z.; Zhao, M.; Guo, M.; Xu, T.; Wang, C.; Xia, H.; Zhu, B. Reversal of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with amantadine. RSC Adv. 2016, 6, 89679–89686. [Google Scholar] [CrossRef]
- Lee, L.A.; Wang, Q. Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 137–149. [Google Scholar] [CrossRef]
- Takeuchi, M.T.; Kojima, M.; Luetzow, M. State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res. Int. 2014, 64, 976–981. [Google Scholar] [CrossRef]
- Kah, M.; Tufenkji, N.; White, J.C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 2019, 14, 532–540. [Google Scholar] [CrossRef]
- Ghormade, V.; Deshpande, M.V.; Paknikar, K. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 2011, 29, 792–803. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, H.B. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: Exploring their scope and potential in agriculture. Appl. Microbiol. Biotechnol. 2014, 99, 1097–1107. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.; Venkatachalam, P.; Sahi, S.; Sharma, N. Reprint of: Silver and titanium dioxide nanoparticle toxicity in plants: A review of current research. Plant Physiol. Biochem. 2017, 110, 33–49. [Google Scholar] [CrossRef]
- Marchiol, L.; Mattiello, A.; Pošćić, F.; Giordano, C.; Musetti, R. In Vivo synthesis of nanomaterials in plants: Location of silver nanoparticles and plant metabolism. Nanoscale Res. Lett. 2014, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Alam Cheema, S.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef]
- Agrawal, S.; Rathore, P. Review Article Nanotechnology Pros and Cons to Agriculture: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 43–55. [Google Scholar] [CrossRef]
- Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Abd-Elsalam, K.A.; Prasad, R. Nanobiotechnology Applications in Plant Protection; Springer: Berlin, Germany, 2018; ISBN 978-3-319-91160-1. [Google Scholar]
- Park, H.-J.; Kim, S.-H.; Kim, H.-J.; Choi, S.-H. A New Composition of Nanosized Silica-Silver for Control of Various Plant Diseases. Plant Pathol. J. 2006, 22, 295–302. [Google Scholar] [CrossRef]
- Gajbhiye, M.; Kesharwani, J.; Ingle, A.; Gade, A.; Rai, M. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed. Nanotechnol. Biol. Med. 2009, 5, 382–386. [Google Scholar] [CrossRef]
- Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017, 7, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sable, S.V.; Ranade, S.; Joshi, S. Role of AgNPs in the enhancement of seed germination and its effect on plumule and radicle length of Pennisetum glaucum. IET Nanobiotechnology 2018, 12, 922–926. [Google Scholar] [CrossRef] [PubMed]
- Ali, K.A.; Yao, R.; Wu, W.; Masum, M.I.; Luo, J.; Wang, Y.; Zhang, Y.; An, Q.; Sun, G.; Li, B. Biosynthesis of silver nanoparticle from pomelo (Citrus Maxima) and their antibacterial activity against acidovorax oryzae RS-2. Mater. Res. Express 2020, 7, 015097. [Google Scholar] [CrossRef]
- Manikandaselvi, S.; Sathya, V.; Vadivel, V.; Sampath, N.; Brindha, P. Evaluation of bio control potential of AgNPs synthesized from Trichoderma viride. Adv. Nat. Sci. Nanosci. Nanotechnol. 2020, 11, 035004. [Google Scholar] [CrossRef]
- Acharya, A.; Pal, P.K. Agriculture nanotechnology: Translating research outcome to field applications by influencing environmental sustainability. NanoImpact 2020, 19, 100232. [Google Scholar] [CrossRef]
- Galbraith, D.W. Nanobiotechnology: Silica breaks through in plants. Nat. Nanotechnol. 2007, 2, 272–273. [Google Scholar] [CrossRef]
- Vijayakumar, P.S.; Abhilash, O.U.; Khan, B.M.; Prasad, B.L.V. Nanogold-Loaded Sharp-Edged Carbon Bullets as Plant-Gene Carriers. Adv. Funct. Mater. 2010, 20, 2416–2423. [Google Scholar] [CrossRef]
- Shankar, S.; Chorachoo, J.; Jaiswal, L.; Voravuthikunchai, S.P. Effect of reducing agent concentrations and temperature on characteristics and antimicrobial activity of silver nanoparticles. Mater. Lett. 2014, 137, 160–163. [Google Scholar] [CrossRef]
- Jaiswal, L.; Shankar, S.; Rhim, J.-W. Applications of nanotechnology in food microbiology. Methods Microbiol. 2019, 46, 43–60. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Kalaichelvan, P.T.; Venkatesan, R. Mycobased Synthesis of Silver Nanoparticles and Their Incorporation into Sodium Alginate Films for Vegetable and Fruit Preservation. J. Agric. Food Chem. 2009, 57, 6246–6252. [Google Scholar] [CrossRef]
- Moharekar, S.; Bora, P.; Kapre, V.; Uplane, M.; Daithankar, V.; Patil, B.; Moharekar, S.; Moharekar, S.T. Exploitation of Aspergillus niger for synthesis of silver nanoparticles and their use to improve shelf life of fruits and toxic dye degradation. IJIPSR 2014, 2, 2106–2118. [Google Scholar]
- García-Contreras, R.; Argueta-Figueroa, L.; Mejía-Rubalcava, C.; Jiménez-Martínez, R.; Cuevas-Guajardo, S.; Sánchez-Reyna, P.A.; Zeron, H.M. Perspectives for the use of silver nanoparticles in dental practice. Int. Dent. J. 2011, 61, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Gurunathan, S.; Jeong, J.-K.; Han, J.W.; Zhang, X.-F.; Park, J.H.; Kim, J.-H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett. 2015, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater. Sci. Eng. C 2015, 53, 298–309. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Park, J.-H.; Han, J.W.; Kim, E.; Jae-Wook, O.; Lee, S.Y.; Kim, J.-H.; Gurunathan, S. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells. Int. J. Mol. Sci. 2016, 17, 2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Mani, A.K. Evaluation of In-vitro Anti-Inflammatory Activity of Silver Nanoparticles Synthesised using Piper Nigrum Extract. J. Nanomed. Nanotechnol. 2015, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Satyavani, K.; Gurudeeban, S.; Ramanathan, T.; Balasubramanian, T. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol. 2011, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Jacob, S.J.P.; Finub, J.; Narayanan, A. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf. B Biointerfaces 2012, 91, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Sri Kumaran, N.; Vijayaraj, R. BIosynthesis of silver nano particles from Leucas aspera (willd.) link and its anti-inflammatory potential against carrageen induced paw edema in rats. Int. J. Pharm. Sci. Res. 2017, 8, 2588–2593. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Thakur, P.; Thakur, A.; Kumar, H.; Chawla, P.; Rohit, J.V.; Kaushik, R.; Kumar, N. Colorimetric sensing approaches of surface-modified gold and silver nanoparticles for detection of residual pesticides: A review. Int. J. Environ. Anal. Chem. 2020, 1–17. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.-P.; Yong, K.-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Q. Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 2016, 75, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Li, H. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology 2008, 19, 465502. [Google Scholar] [CrossRef]
- Menon, S.K.; Modi, N.R.; Pandya, A.; Lodha, A. Ultrasensitive and specific detection of dimethoate using a p-sulphonato-calix[4]resorcinarene functionalized silver nanoprobe in aqueous solution. RSC Adv. 2013, 3, 10623. [Google Scholar] [CrossRef]
- Pilaquinga, F.; Morey, J.; Torres, M.; Seqqat, R.; de las Nieves Piña, M. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2021, e1707. [Google Scholar] [CrossRef]
- Khandelwal, N.; Kaur, G.; Kumar, N.; Tiwari, A. Application of silver nanoparticles in viral inhibition: A new hope for antivirals. Dig. J. Nanomater. Biostructures 2014, 9, 175–186. [Google Scholar]
- Song, K.S.; Sung, J.H.; Ji, J.H.; Lee, J.H.; Lee, J.S.; Ryu, H.R.; Lee, J.K.; Chung, Y.H.; Park, H.M.; Shin, B.S.; et al. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology 2012, 7, 169–180. [Google Scholar] [CrossRef]
- Kim, J.S.; Sung, J.H.; Ji, J.H.; Song, K.S.; Lee, J.H.; Kang, C.S.; Yu, I.J. In vivo Genotoxicity of Silver Nanoparticles after 90-day Silver Nanoparticle Inhalation Exposure. Saf. Health Work 2011, 2, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, J.H.; Jung, J.H.; Kim, S.S.; Yoon, J.-U.; Park, J.D.; Choi, B.S.; Chung, Y.H.; Kwon, I.H.; Jeong, J.; Han, B.S.; et al. Twenty-Eight-Day Inhalation Toxicity Study of Silver Nanoparticles in Sprague-Dawley Rats. Inhal. Toxicol. 2007, 19, 857–871. [Google Scholar] [CrossRef] [PubMed]
- Hyun, J.; Lee, B.; Ryu, H.; Sung, J.; Chung, K.; Yu, I. Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol. Lett. 2008, 182, 24–28. [Google Scholar] [CrossRef]
- Kwon, J.-T.; Minai-Tehrani, A.; Hwang, S.-K.; Kim, J.-E.; Shin, J.-Y.; Yu, K.-N.; Chang, S.-H.; Kim, D.-S.; Kwon, Y.-T.; Choi, I.-J.; et al. Acute Pulmonary Toxicity and Body Distribution of Inhaled Metallic Silver Nanoparticles. Toxicol. Res. 2012, 28, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Mukkur, T.; Benson, H.A.; Chen, Y. Pharmaceutical Aspects of Intranasal Delivery of Vaccines Using Particulate Systems. J. Pharm. Sci. 2009, 98, 812–843. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Behera, A.K.; Lockey, R.F.; Zhang, J.; Bhullar, G.; De La Cruz, C.P.; Chen, L.-C.; Leong, K.; Huang, S.-K.; Mohapatra, S.S. Intranasal Gene Transfer by Chitosan–DNA Nanospheres Protects BALB/c Mice Against Acute Respiratory Syncytial Virus Infection. Hum. Gene Ther. 2002, 13, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Wang, J.; Patterson, T.; Saini, U.; Robinson, B.; Newport, G.; Murdock, R.; Schlager, J.; Hussain, S.; Ali, S. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 2009, 187, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ji, Z.; Chang, C.H.; Zhang, H.; Wang, M.; Liao, Y.-P.; Lin, S.; Meng, H.; Li, R.; Sun, B.; et al. Use of Coated Silver Nanoparticles to Understand the Relationship of Particle Dissolution and Bioavailability to Cell and Lung Toxicological Potential. Small 2013, 10, 385–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Xiong, L.; Wang, S.; Wang, J.; Liu, L.; Li, J.; Yuan, F.; Xi, T. Distribution, Translocation and Accumulation of Silver Nanoparticles in Rats. J. Nanosci. Nanotechnol. 2009, 9, 4924–4932. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, D.K.; Jin, T.; Behari, J. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol. Mech. Methods 2010, 21, 13–24. [Google Scholar] [CrossRef]
- Shahare, B.; Yashpal, M. Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol. Mech. Methods 2013, 23, 161–167. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.S.; Cho, H.S.; Rha, D.S.; Kim, J.M.; Park, J.D.; Choi, B.S.; Lim, R.; Chang, H.K.; Chung, Y.H.; et al. Twenty-Eight-Day Oral Toxicity, Genotoxicity, and Gender-Related Tissue Distribution of Silver Nanoparticles in Sprague-Dawley Rats. Inhal. Toxicol. 2008, 20, 575–583. [Google Scholar] [CrossRef]
- Adeyemi, O.S.; Faniyan, T.O. Antioxidant status of rats administered silver nanoparticles orally. J. Taibah Univ. Med. Sci. 2014, 9, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Gaillet, S.; Rouanet, J.-M. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms—A review. Food Chem. Toxicol. 2015, 77, 58–63. [Google Scholar] [CrossRef]
- Vazquez-Munoz, R.; Borrego, B.; Juarez-Moreno, K.O.; García-García, M.; Mota-Morales, J.; Bogdanchikova, N.; Huerta-Saquero, A. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol. Lett. 2017, 276, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Yu, I.J. Estimation of human equivalent exposure from rat inhalation toxicity study of silver nanoparticles using multi-path particle dosimetry model. Toxicol. Res. 2012, 1, 206–210. [Google Scholar] [CrossRef]
- Lee, J.H.; Mun, J.; Park, J.D.; Yu, I.J. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology 2011, 6, 667–669. [Google Scholar] [CrossRef]
- Armitage, S.A. The determination of silver in whole blood and its application to biological monitoring of occupationally exposed groups. Ann. Occup. Hyg. 1996, 40, 331–338. [Google Scholar] [CrossRef]
Sr. No. | Organism Taken for AgNPs | Size | Shape | Characterization | Synthesis Conditions | Activity Studied | Reference |
---|---|---|---|---|---|---|---|
1. | Escherichia coli, Exiguobacterium aurantiacumm, Brevundimonas diminuta | 5–50 | Spherical | UV, TEM, XRD, FTIR, SEM | At pH 9, incubation temp. 37 °C, for 24 h and 72 h in dark | Antibacterial Gram-positive Bacillus subtilis, Staphylococcus aureus, Bacillus cereus Gram-negative Staphylococcus, Pseudomonas aeruginosa, Klebsiella pneumonia, Escherichia coli, Salmonella typhi, Enterobacter vermicularris | [18] |
2. | Cyanobacterium, Chroococcus minutus | UV, SEM, FTIR, XRD, SEM-EDX | Incubated for 24–56 h at 40 °C | Antibacterial Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa | [21] | ||
3. | Lysinibacillus xylanilyticus strain MAHAQ-40 | 8–30 | Spherical | UV, FTIR, XRD, DSL, FE-TEM | Incubated for 48 h at 30 °C | Antibacterial Salmonella typhimulium, Vibrio parahaemolyticus | [19] |
4. | Sphingobium sp. MAH-11 | 7–22 | Spherical | SAED, XRD, FTIR | Incubated for 24 h at 30 °C | Antibacterial Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa | [22] |
5. | Bacillus pumilus, Bacillus paralicheniformis, Sphigomonaspaucimobilis | 4–20 | Spherical, Oval | XRD, TEM, FTIR | Cytotoxicity Vigna radiata | [23] | |
6. | Streptomyces coelicoflavus KS-3 | 2.33–91.3 | Spherical, truncated, triangular, quadrangular and hexagonal | XRD, TEM, FTIR, DLS, EDX | At pH 7, incubated for 72 h at 32 °C in dark | Cytotoxicity Carcinoma cells (HTB-182), Adeno-carcinoma cells (A549) | [20] |
7. | Bacillus subtilis (SDUM301120) | 2–26 | Spherical | HRTEM, UV, XRD EDX, FTIR | At pH 9, incubated for 12 h | Antibacterial Escherichia coli ATCC 25922, Staphylococcus aureus ATCC29213, Vibrio parahaemolyticus ATCC 17802, Acinetobacter baumanni ATCC 19606 | [24] |
8. | Cytobacillus fimus | 14.23 | Spherical | UV, FTIR, XRD, SEM, DLS | Incubated for 24 h at 37 °C | Antibacterial Escherichia coli, Staphylococcus aureus Antifungal Magnaporthe grisea | [25] |
9. | Lysinibacillus sphaerius | 14–21 | Spherical, hexagonal, cuboidal, rod-shaped, irregular | UV, TEM, DLS, FTIR | Incubated at room temp. for 48 h | Antibacterial Gram-negative E. coli ATCC 25955, Pseudo aeruginosa ATCC 10145, Klebsiella pneumonia, Proteus vulgaris, Salmonella typhimurium, Enterobacter aerogennes, Shigella dysenteriae Gram-positive Bacillus subtilis ATCC 6633, Staphylococcus aureus NRRL Antifungal Yeast, filamentous fungi Virucidal Rotavirus Cytotoxicity Epithelial cell MA 104 | [26] |
10. | Bacillus brevis (NCIM 2533) | 41–68 | Spherical | UV, FTIR, TLC, SEM, AFM | Incubate for 2 h at room temp. | Antibacterial Salmonella typhai, Staphylococcus aureus | [27] |
11. | Bacillus pumilus, B. persicus, B. licheniformis | 77–92 | Spherical, triangular, hexagonal | UV–Vis, FTIR, TEM, EDX, DLS | Human pathogenic bacteria Bean yellow mosaic virus | [28] |
Sr. No. | Organism Taken for AgNPs | Size (nm) | Shape | Characterization | Synthesis Conditions | Activity Studied | References |
---|---|---|---|---|---|---|---|
1. | Pyropiayozoensis | 20–22 | Spherical | FTIR, XRD, SEM, TEM | Incubated at 35 °C in dark for 15–20 min | Antibacterial Pseudomonas aeruginosa, Staphylococcus aureus | [39] |
2. | Polysiphonia | 25 | Spherical | FTIR, SEM, TEM, EDX | Stirring at room temp. for 2 h | Anticancer MCG-7 cell line | [40] |
3. | Spirulina platensis | 30–50 | Spherical | FTIR, UV, SEM, TEM | At pH range 4.7–5.0, incubated for 10 min at 60 °C | Antibacterial Escherichia coli, MTCC-9721, Proteus vulgaris, MTCC-7299, Klebsiella pneumoniae, MTCC-9751, Staphylococcus aureus, MTCC-9542, S. epidermidis, MTCC-2639, Bacillus cereus, MTCC-9017 | [41] |
4. | Chlorella valgaris | 55.06–61.89 | Spherical | FTIR, XRD, FESEM, UV, DLS | Incubated at room temp. for 24 h | Photocatalytic dye degradation | [42] |
5. | Spyridia fusiformis | 5–50 | Spherical, triangular, pseudo-spherical, rectangular | FTIR, TEM, XRD, HR-TEM | Incubated at room temp. | Antibacterial Escherichia coli (ATCC 10798), Klebsiella pneumaniae (ATCC 31488), Staphylococcus aureus (ATCC 10832D-5), Pseudomonas aeruginosa (ATCC 207) | [43] |
6. | Noctiluca valgaris | 4.5 | Spherical | DSL, SEM, EDS, UV, HRTEM | Anticancer MDA-MB-231 Antibacterial Escherichia coli ATCC25922, Staphylococcus aureus ATCC29213 | [44] | |
7. | Spirulina platensis | 29 | Spherical and dispersed | UV, SEM, TEM, DSL, XRD, FTIR | Under sunlight for 10–20 min at pH 7, incubated at room temp. | Anti-biofilm Pseudomonas aeruginosa PA14 | [45] |
Sr. No. | Organism Taken for AgNPs | Size (nm) | Shape | Characterization | Synthesis Conditions | Activity Studied | Reference |
---|---|---|---|---|---|---|---|
1. | Trichoderma spp. | Round | UV, TEM, FTIR | pH 5–7 Incubated for 3–9 days at 32 °C | Antibacterial Gram-positive Staohylococcus aureus ATCC 6538, Enterococcus faecalis ATCC 29212 Gram-negative E. coli ATCC 8939, Pseudomonas aeruginosa ATCC25853 | [56] | |
2. | Penicillium aculeatum Su1 | 4–55 | Spherical | UV, TEM, DLS, EDX, XRD, FTIR | Incubated for 72 h in dark at 32 °C | Enzyme activity Nitrate reductase Protein identification | [57] |
3. | Trichoderma longibrachiatum | 10 | Spherical | UV, TEM, FTIR, DLS | Incubated for 48 h in dark at 22–33 °C | Antifungal Fusarium verticillioides, Fusarium moniliforme, Penicillum brevicompactum, Heminthosporium oryzae, Pyricularia grisea | [50] |
4. | Fusarium scirpi | 2–20 | Quasi- spherical | UV, XRD, STEM, HRTEM, EDX | Incubated for 72 h at 28 °C | Antimicrobial Uropathogenic E. coli | [58] |
5. | Punica gramatum | 5–45 | Spherical | UV, FTIR, XPS, XRD, TEM | Incubated for 2 days at 90 °C | DPPH, DNA cleavage, Antibacterial Gram-negative L. pneumophila, P. aeruginosa, E. coli Gram-positive E. hirae, B. cereus, S. aureus | [55] |
6. | Pichia kudriavzevii HA-NY2 Saccharomyces uvarum HA-NY3 | 12.4–30 | Cubic, spherical | UV, TEM, FTIR, DLS | Incubated for 72 h in dark at 30 °C | Antibacterial Gram-positive Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 29213 Gram-negative Pseudomonas aeruginosa ATCC 27953, Candida tropicalis ATCC 750, Fusarium oxysporium NRC21 Anti-inflammatory Paw edema | [54] |
7. | Aspergillus niger | 10.31 | Spherical | FTIR, TEM, UV | Incubated for 72 h in dark at 28 °C | Anti-amoebic Allovahlkampfia spelaea | [59] |
8. | Piriformospora indica | 6–15 | Spherical | UV, SEM, EDX, TEM, FTIR, XRD | At pH 6, incubated for 72 h at 28 °C | DPPH Anticancer Human breast Adenocarcinoma (MCF-7), Human cervical carcinoma (HeLa), Human liver hepatocellular carcinoma (HepG2), Embryonic kidney cell (HEK-2930) Antiproliferative MCF-7, HeLa, HepG2 | [60] |
9. | Trichoderma | 5–50 | Spherical, oval | SEM, EDS, TEM, XRD, FTIR | At pH 7, incubated for 1 h at 25 °C | Antifungal Sclerotinia sclerotiorum | [61] |
10. | Cinnamomum zeylanium | 76 | Spherical, oval | SEM, EDS, TEM, XRD, FTIR, EDX | Incubated for 24 h at room temp. | Antibacterial Staphylococcus aureus, E. coli, Pseudomonas aeruginosa | [53] |
Sr. No. | Plants | Part | Size (nm) | Shape | Characterization | Reducing Agent | Synthesis Conditions | Activities Studied | References |
---|---|---|---|---|---|---|---|---|---|
1 | Ruta graveolens | Leaves | 40–45 nm | Spherical | FTIR, SEM | Alcohol, phenol, primary amine, sec. amine, azide, carbamide, allene, ketenimine, alkane, alkene, aldehyde, ester, amine, halo compounds | Incubated at room temp. for 24 h | Anticancer Antibacterial Escherichia coli, Proteus mirabilis, Shigella flexneri, Staphylococcus aureus Insecticidal Culex pipiens | [66] |
2 | Phoenix dactylifera, Ferula asafetida, Acacia nilotica | Fruit | 67.8–155.7 nm | Spherical | FT-IR FE-SEM, TEM, Zeta potential | Alcohol, phenol or glycoside, amide, aromatic nitrile | Incubated at room temp. for 48 h | Antibacterial Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa Anticancer | [69] |
3 | Cymbopogon citrates (lemon grass) | Leaves | 50–80 nm | Spherical | UV–Vis, XRD, FTIR, AFM, SEM, TEM | Amine, phenol, alkane, alkyl | Incubated at room temp. | Antidiabetic | [70] |
4 | Aaronsohnia factorovskyi | Stem, leaves, flower | 104–140 nm | Spherical | UV–Vis, FT-IR, FE-SEM, GC–MS | Carboxylic acid, alkyne, thiocynante, aronatic compound, alkene, isothiocynate | Incubated in sunlight for 30 min | Antibacterial Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli Antifungal Fusarium oxysporum, Fusarium solani, Helminthosporum rostratum, Alternaria alternate | [71] |
5 | Eucalyptus camaldulensis | Leaves | 16–28 nm | Spherical | UV–Vis, SEM, FTIR, XRD, EDX, DLS, Zeta | Alcohol, phenol, flavonoid, flavones, catechin, ester, ether, alkane, carboxylic acid, primary amine, aldehyde | Incubated at 25 °C in dark for 24 h | Antioxidant | [72] |
6 | Terminalia arjuna | Leaves | 10–50 nm | Spherical | UV–Vis, FTIR, TEM, FE-SEM, XRD | Halo compounds, amine, alkyne, alcohol, phenol | Incubated at 40–45 °C | Catalytic degradation of organic dyes methyl orange, methylene blue, Congo red and 4-Nitrophenol | [73] |
7 | Ehretialaevis-Roxb. | Leaves | 25–30 nm | Spherical | UV–Vis, FTIR, TEM, XRD, EDX, Zeta | Alcohol or phenol, alkenes, primary amines, alkanes, alkyl halides | Incubated at 90 °C for 1 h | Antimicrobial Bacillus subtilis, Escherichia coli, Enterococcus faecalis, Pseudomonas arginosa Larvicidal Culex quinquefasciatus Anticancer | [74] |
8 | Capparis zeylania L. | Leaves | 23 nm | Spherical | UV–Vis, FTIR, XRD, SEM, TEM | Alkynes, phosphine group, aliphatic ester, amine, nh group, carbonyl group, hydroxyl group | Incubated in dark conditions at 37 °C | Antibacterial Enterococcus faecalis, Staphylococcus epidermidis, Salmonella paratyphi, Shigella dysenteriae Antifungal Candida albicans, Aspergillus niger Antiproliferative | [75] |
9 | Tribulus terrestris L. | Shoot | ~25 nm | Spherical | UV–Vis, TEM, DLS, XRD | Kept in dark at room temp. | Antibacterial Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus Photocatalytic activity Cytotoxicity activity | [76] | |
10 | Cyperus pangorei | Leaves | 32–60 nm | Spherical | UV–Vis, FTIR, XRD, TEM, EDXXPS | Carboxylic acid, phenol group, cyclohexane ring | Kept in an oven at 100 °C for 1 h | Photocatalytic activity of Ag NPs against dye Rhodamine B | [77] |
11 | Onosmasericeum Wild. | Root | 10–50 nm | Spherical | UV–Vis, FT-IR, FESEM, EDAX, TEM, XRD | Alcohol or phenol | pH 8, temp. 25 °C | Antibacterial Acinetobacter baumannii, Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Aeromonas hydrophila Cytotoxicity MCF-7 breast cancer cell line Catalytic effect 2-nitrobenzenamine | [78] |
12 | Abutilon indicum | Leaves | 50–100 nm | Spherical | UV–Vis, FTIR, SEM | Amines, alcohol, ketones, aldehyde, etc. | Incubated at room temp. | Antibacterial Escherichia coli, Streptococcus aurous | [79] |
13 | Decaschistiacrotonifolia | Leaves | 12–18 nm | Spherical | UV–Vis, FTIR, TEM, XRD | Alcohol, carboxylic acid, ester, ether, phenols, alkanes, amides, alkaloid, etc. | Incubated at room temp. | Antimicrobial Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, Bacillus subtilis Antioxidant Photocatalytic activity of dyes Cotton blue Congo red 4-nitrophenol | [67] |
14 | Azadirachta indica, Citrullus colocynthis | Leaves Fruit | 17 nm 26 nm | Spherical | UV–Vis, FTIR, SEM, EDX, XRD | Polyphenols, aromatic terpenoid, flavonoids, alkene, ether, amines, aldehydes, ketones, carboxylic acid | 70 °C temp. | Larvicidal Aedes aegypti | [80] |
15 | Litchi chinensis | Leaves | 5–15 nm | Spherical | UV–Vis, FTIR, TEM | Phenolic compound, alcohol, etc. | 95 °C temp. | Bactericidal and sporicidal Bacillus subtillus | [6] |
16 | Asphodelus tenufolius | Shoot, Seed | 58.2 nm 51.6 nm | Spherical and polydispersed | UV–Vis, FTIR, SEM | Alkanes, alkyne, alkene, carboxylic acid, alcohol/ phenols | pH 5.5, temp. 30 °C | [81] | |
17 | Jasmine flower | Flower | 40 nm | UV–Vis, FTIR, SEM, TEM | Phenolic compounds, alcohol, phenol, alkyl, etc. | Incubated for 2 h at 110 °C | Antimicrobial Escherichia coli, Staphylococcus aureus Photocatalytic degradation of methylene blue dye | [82] | |
18 | Pisum sativum L. | Seed | 10–25 nm | Spherical | UV–Vis, FTIR, XRD, SEM | Phenol, alkynes, amines, alkyl halides, etc. | 24 h incubation | Antioxidant Antidiabetic Cytotoxicity Antibacterial Escherichia coli, Enterococcus faecium, Streptococcus typhimurium and Streptococcus entrica | [83] |
19 | Eryngium caucasicumTrautv | Leaves | 10–20 nm | Spherical | UV–Vis, FTIR, XRD, TEM, SEM | Phenols, amines, alcohol, carboxylic acid, ester, ether, terpenoid, flavonoids, tannins | Incubated at 80 °C for 8 h | Antibacterial Escherichia coli, Staphylococcus aureus | [84] |
20 | Dregavolubilis | Flower | 8.59–19.18 nm | Spherical | UV–Vis, FTIR, FESEM, EDX, HRTEM | Polyphenol, phenolic acid, polysaccharides, flavones, amide | Incubated at room temp. | Antioxidant Antidiabetic Antibacterial Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus | [85] |
21 | Carissa carandas L. | Leaves | 30–35 nm | UV–Vis, FTIR, XRD | Alkenes, methoxy group, alkynes | Incubated at temp. 25 and 60 °C | Antioxidant Antibacterial Salmonella typhimurium, Enterobacter faecalis, Shigella flexneri, Citrobacter spp. Gonococci spp. | [68] | |
22 | Artemisia vulgaris | Leaves | 25 nm | Spherical | UV–Vis, FTIR, SEM, EDX, TEM, AFM | Phenolic group, phenols, aromatic amines, carbonyl groups | Incubated at room temp. for 2 h | Antioxidant Anticancer Antimicrobial Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumoniae, Haemophillus influenza | [86] |
23 | Aervalanata | Flower | 90 nm | UV–Vis, SEM, AFM, FTIR, TEM, XRD | Alkenes, secondary amines, carboxylic acid ether, ester alcohol | Anticancer Antibacterial Bacillus subtilis, Escherichia coli, Klebsiella planticola, Streptococcus faecalis Photocatalytic activity Methylene blue | [87] | ||
24 | Moringa oleifera | Seed | 4.0 nm | Spherical | UV–Vis, SEM, TEMFTIR, XRD | Polyphenolic or flavonoid compounds, alkanes, alkenes, primary alcohol | pH 11.0, temp. 60 °C | Antimicrobial Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica typhimurium Photocatalytic activity Methylene blue, orange red, 4-nitrophenol | [88] |
25 | Euphorbia sanguine | Leaves | 20–28.8 nm | Spherical | UV–Vis, SEM, TEM, FTIR | Amines, hydroxyl group | Incubated at room temp. | Photocatalytic activity Congo red dye Melanogenesis inhibition activity | [89] |
26 | Annona reticulata | Leaves | 7.67–8.34 nm | spherical | UV–Vis, FTRI, TEMXRD | Chloride group, anhydride group, methyl group, carbonyl group, alkane, amide | Incubated for 2 h in dark at room temp. | Larvicidal Aedes aegypti Antibacterial Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus Antifungal Candida albicans | [90] |
27 | Allium ampeloprasum | Aerial part | 2.3–27 nm | Spherical | UV–Vis, FTIR, XRD, TEM | Alcohol, phenolic compound, methyl, methylene, methoxy group, carboxylic acid, ester, ether, aliphatic amine | Temp. 35–37 °C | Anticancer Antibacterial Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus Antioxidant | [91] |
28 | Chlorophytum borivilianum | Root tuber | 2.4–19.4 nm | Spherical | UV–Vis, FTIR, XRD, TEM | Hydroxyl group, aldehyde group, amide, aromatic ether | pH 4.6, at room temp. | Phytotoxicity during seedling growth of Peltophorumpterocarpum | [92] |
29 | Rosa Santana (Rose) | Petal | 6.52–25.24 nm | Spherical | UV–Vis, FTIR, XRD, TEM | Hydroxyl, alkyl, alkyne, halogenated compound | Incubated at 90 °C for 25 min | Antibacterial Escherichia coli, Staphylococcus aureus Cytotoxicity against mouse fibroblast cell line by XTT assay | [93] |
30 | Citrus medica, Tagetes lemmonii, Tarenna asiatica | Leaves | 40–220 nm, 30–120 nm, 60–350 nm | Spherical, cuboid | UV–Vis, FTIR, SEM, XRD | Aromatic amines, alcohols, carboxylic acids, esters, ether | Larvicidal Aedes aegypti | [94] | |
31 | Diospyros lotus | Leaves | 10–25 nm | Spherical | UV–Vis, FTIR, TEM, XRD, SEM | Phenolic, aromatic alkenes, aliphatic hydrocarbon chain, amine | Phytochemical screening Antibacterial Escherichia coli Anticoagulant Catalytic activity Methylene blue | [95] | |
32 | Chlorophytum borivilianum L. (Safed musli) | Callus | AVG. 52 nm | UV–Vis, FTIR, XRD, AFM | Amine, phenol, hydroxyl, alkyl, alkenes, alkynes | Incubated at room temp. for 5 h | Antibacterial Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis Antifungal Candida albicans Cytotoxicity Colon cancer cell line | [96] | |
33 | Putranjivaroxburghi Wall | Seed | 13–69 nm | Spherical | UV–Vis, AEM, XRD, FTIR, TEM | Aliphatic primary amine, alkane, aldehydes, alkene, amines, sulfoxide, alcohol/phenols, phosphine, alkyl halide, alkyne, Staphylococcus | pH 8.5 | Phytochemical analysis Anticancer Antibacterial Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus faecalis | [97] |
34 | Cataharanthus roseus | Leaves | TEM | Incubated in dark at room temp. for 24 h | Anticancer | [98] | |||
35 | Solanum turvum | Fruits | 27 nm | Spherical | UV–Vis, FTIR, DLS, SEM, EDS, TEM | Alcoholic and phenolic compound, alcohol and ether, polyphenols, amide, carbon chloride | Incubated at room temp. for 12 h, pH 6 | Antibacterial Xanthomonas axonopodispv. punicae, Ralstoniasolanacaerum Phytotoxicity study Vigna unguiculata | [99] |
36 | Acacia nilotica | Stem | 27–50 nm | Spherical | UV–Vis, FTIR, XRD, SEM, TEM, XPS, DLS, etc. | Phenol/carboxylic acid, secondary alcohol | Temp. 40–50 °C for 5 h | Antibacterial Methicillin resistance, Staphylococcus aureus Antifungal Candida albicans Reduction of pollutant 4-nitrophenol, 2-nitrophenol Degradation of dyes Congo red, methylene blue, methyl orange | [100] |
37 | Corn cobs | Xylan | Avg. 55.3 nm | Spherical, triangular, square, oval | UV–Vis, AFM, EDS, DLS, SEM, FTIR, RAMAN spectroscopy, flow cytometry | Monosaccharide, carboxylic group, beta-glycosidic bond, hydroxyl group | Incubated for 24 h in dark conditions | Anti-parasitic activity Trypanosoma cruzi Cytotoxicity | [101] |
38 | Murrayakoenigii | Leaves | Avg. 42 nm | Spherical | UV–Vis, FTIR, SEM | Hydroxyl group, ketones, aromatic compounds, quinone | Incubated at room temp. for 2 h | Antibacterial Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus,Klebsiella pneumoniae Cytotoxicity In vitro In vivo | [102] |
39 | Nigella sativa (Black cumin) | Seed | Avg. 34 nm | Spherical | UV–Vis, XRD, FTIR, TEM, EDX, GC–MS | Hydroxyl, amide, alkenes, alcohol, aldehydes, ketones or carboxylic acid | Antidiabetic Anti-inflammatory Antioxidant Antibacterial Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes | [103] | |
40 | Catharanthus roseus | Leaves | 40–60 nm | Bunch form | FTIR, EDX, SEM | Antibacterial Shigella dysenteriae, Klebsiella pneumoniae, Bacillus anthraces, Staphylococcus aureus, Pseudomonas aeruginosa | [104] | ||
41 | Allopylus cobs | Leaves | 2–100 nm | Crystalline | UV–Vis, XRD, FTIR, TEM, XPS, DLS | Methyl, amide, free amino, carboxylate | Antibacterial Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, Streptococcus pneumonia Anti-biofilm | [105] |
Sr. No. | Virus | Family | Source of AgNPs | AgNPs Size | Composition | Synthesis Conditions | Mechanism of Action | Reference |
---|---|---|---|---|---|---|---|---|
1. | Coronavirus | Coronaviridae | Pure Ag Nanowire and colloid | 10–20 nm | 3–13 µg/mL | AgNPs procured from the Institute for Health and Consumer Protection (IHCP, a Joint Research Centre of European Commission located in Italy) | AgNPs decreased cell apoptosis through activation of p38/mitochondria/caspase-3 signaling in ST cells | [184] |
2. | Malaria, Nile Virus, Zika | Flaviviridae | Naregamiaalata | 5–35 nm | 6–30 µg/mL | Incubated for 10 min at room temp. | AgNPs’ passage through the insect cuticle and into individual cells interferes with molting and other physiological processes | [185] |
3. | SARS-CoV-2 | Coronaviridae | 200 nm coating | 100–200 µL | Coating reduces the titers of SARS-CoV-2 to zero | [186] | ||
4. |
Herpes Simplex Virus and Human Parainfluenza Virus Type 3 | Herpesviridae Paramyxoviridae | Alternaria species | 46 nm | 0.1–10 µg/mL | Fungus suspended in distilled water for 48 h |
AgNPs control viral infectivity by blocking interaction of the virus with the cell | [187] |
5. |
Herpes Simplex Virus Human Parainfluenza Virus Type 3 | Herpesviridae Paramyxoviridae | Fusarium. oxysporum | 20 nm | 0.1–10 µg/mL | Fungus suspended in distilled water for 48 h |
AgNPs may block an early event before stable binding of the virus with the cell membrane, but it is likely that the nanoparticles interact directly with the viral envelope or its proteins and behave as virucidal agents | [187] |
6. |
Herpes Simplex Virus and Human Parainfluenza Virus Type 3 | Herpesviridae Paramyxoviridae | Curvularia species | 30 nm | 0.1–10 µg/mL | Fungus suspended in distilled water for 48 h | Interference with replication at the post-entry phase | [187] |
7. | Herpes Simplex Virus (HSV-I,II) | Herpesviridae | Sargassum withtii | 0.5–5 µg/mL | Seaweed powder treated with 90 mL of 10 mM AgNO3 solution for 15 h under stirring conditions | AgNPs possess size-dependent interaction and the ability to block virus attachment and entry | [188] | |
8. | Respiratory syncytial virus | Pneumoviridae | Poly-vinylpyrolidone (PVP) coated silver nanospheres | 8–12 nm | 1 mg/mL and 2–4 mg/kg of mice | Procured from NanoComposix Inc. (San Diego, CA, USA) | AgNPs attached to surface glycol proteins and interfered with RSV’s ability to initiate attachment with the proper receptors, preventing fusion of the virus to the host cell | [189] |
9. | Norovirus Surrogates | 1 g/Kg | 4–10 nm | 21 mg/L | PHBV18 suspended in ultrapure Milli-Q water and then mixed with sodium borohydride and AgNO3 | AgNPs reduce certain no. of NK cells | [190] | |
10. | Rhesus Rotavirus | Reoviridae | Collagen | 10 nm | 50 µL (0.4 mM) | The AgNP–collagen mixture gelled inside the abdominal cavity at temp. 37 °C | The virus load reduced in the liver due to increase in NK cells and T cells together | [191] |
11. | Herpes Simplex Virus Type 2 | Herpesviridae | Tannic-acid-modified AgNP | 10–65 nm | 2.5–5 µg/mL | Mixture of sodium citrate (4%) and tannic acid (5%) added to AgNO3 and stirred | AgNPs interact with the virion’s surface and create a physical obstacle, impairing interaction with the viral receptors on the cell surface | [192] |
12. | Herpes Simplex Virus 2 (HSV-2) | Herpesviridae | Tannic-acid-modified AgNP | 20–40 nm | 5 µg/mL | Reducing agent added to aqueous solution of silver nitrate and heated to boiling point | Tannic acid has been shown to inhibit the attachment of viruses to host cells | [193] |
13. | Zika Virus | Flaviviridae | Rhazyastricta | 20–40 nm | 5–120 µg/mL | Dried powdered leaf extract mixed with 1 mM AgNO3 at room temp. | Due to minute size, they effectively penetrate the infectious agent | [194] |
14. | HIV-1 | Retroviridae | Rhizophoralamarckii | 12–28 nm | 0.25–1 µg/mL | 3 mL of extract reacted with 47 mL of 1 mM AgNO3 and incubated for 6 h | HIV-1 reverse transcriptase inhibitory activity | [195] |
15. | H1N1 Influenzae | Orthomyxoviridae | Zanamivir AgNP | 2–3 nm | 2.5 µg/mL | Constant magnetic stirring for 30 min at room temp. | Zanamivir is neuraminidase (NA) inhibitor and binds with NA pocket to disturb enzyme reaction | [196] |
16. | H1N1 Influenzae | Orthomyxoviridae | Oseltamivir | 2–3 nm | 2.5 μg/mL | 0.1 mL Vit. C added to 4 mL AgNO3 at room temp. | Blocks the release of new virions from the cell’ smembrane and becomes resistant to the influenza A virus | [197] |
17. | Respiratory Syncytial Virus (RSV) | Paramyxoviridae | Curcuma longa | 0.23 nm | 0.008–0.24 nM | Curcumin dissolved in DMSO and added to ultra-pure water. Vigorous stirring of AgNO3 (10 mM) at 100 °C | AgNPs could prevent the virus from entering into cells and its replication | [198] |
18. | HSV-1, HAV-10, and CoxB4 virus | Herpesviridae |
Lampranthus coccineus | 10.12–27.89 nm | 10–40 µg/mL | Aqueous extract added to 1 mM silver nitrate in the ratio 2:10 and kept in water bath for 10 min at 60 °C | Interacts with herpes simplex thymidine kinase, hepatitis A 3c proteinase and Coxsackie virus B4 3c protease | [199] |
19. | HSV-1, HAV-10 andCoxB4 virus | Herpesviridae | Malephora lutea F. Aizoaceae | 8.91–14.48 nm | 10–40 µg/mL | Aqueous extract added to 1 mM silver nitrate in the ratio 2:10 and kept in water bath for 10 min at 60 °C | Interacts with herpes simplex thymidine kinase, hepatitis A 3c proteinase and Coxsackie virus B4 3c protease | [199] |
20. | Dengue Virus | Flaviviridae |
Leucasaspera
Hyptissuaveolens | 7–22 nm TEM 22–43 nm FRSEM | 2–10 mg/L | 2 mL of fresh extract added to 98 mL of aqueous silver nitrate (1 mM) solution and incubated at 28 °C for 60 min | The surface reactivity facilitated by capping makes these functionalized NPs a promising tool for vector control | [200] |
21. | HIV-1 | Retroviridae | PVP/BSA-coated AgNPs | 1–10 nm | 25 µg/mL | AgNPs procured from Nanotechnologies, Inc. | AgNPs bind with GP120 subunit of viral envelope glycoprotein | [201] |
22. | Influenza | Orthomyxoviridae | Lipoic acid | 8–12 nm | 0.5–5 µg/mL | AgNPs procured from Nanocomposix company | AgNPs induced neutrophil and monocyte recruitment and increased the levels of KC (CXCL-1), IL-12 and IL-6, as soon as 4 h after AgNP injection | [202] |
23. | Herpesvirus-1 | Herpesviridae | Chemical reduction | 15–50 nm | 24 µg/mL | The solution prepared for two-fold serial dilutions with varied concentration | AgNPs at nontoxic concentrations were capable of inhibiting BoHV-1 when administered prior to viral infection | [203] |
24. | HSV-1, HIV | Herpesviridae Retroviridae | Sonochemical method | 1–10 nm | 1–10 µmol/mL | Severe stirring at room temperature | Interact with viral envelope glycoprotein | [204] |
25. | SARS-CoV-2 | Coronaviridae | Polycotton AgNP-CS | 10–28 nm | 5% | NanoxTecnologia S.A.–São Carlos/SP-Brazil) | Binding of AgNPs with sulfur residues from the virus’s surface glycoproteins, preventing interaction with the receptor and its entry into the host cell | [205] |
26. | H1N1 Influenza A Virus | Orthomyxoviridae | AgNP–chitosan | 5.5–12.9 nm | 62–77 µg/mL | Aqueous medium at room temperature | Virion and composite interacted as the NP size is very small and cause degradation of virus | [206] |
27. | Dengue virus (DEN-2) | Flaviridae | Moringa oleifera | 100 nm | 20 µg/mL | Toxic action of M. oleifera AgNPs against A. aegypti may be linked to lectin content, which is able to affect digestive and detoxifying enzymes | [207] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamal, D.; Singh, A.; Chaudhary, G.; Kumar, M.; Singh, M.; Rani, N.; Mundlia, P.; Sehrawat, A.R. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials 2021, 11, 2086. https://doi.org/10.3390/nano11082086
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials. 2021; 11(8):2086. https://doi.org/10.3390/nano11082086
Chicago/Turabian StyleBamal, Deepak, Anoop Singh, Gaurav Chaudhary, Monu Kumar, Manjeet Singh, Neelam Rani, Poonam Mundlia, and Anita R. Sehrawat. 2021. "Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review" Nanomaterials 11, no. 8: 2086. https://doi.org/10.3390/nano11082086
APA StyleBamal, D., Singh, A., Chaudhary, G., Kumar, M., Singh, M., Rani, N., Mundlia, P., & Sehrawat, A. R. (2021). Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials, 11(8), 2086. https://doi.org/10.3390/nano11082086