Enhancement of Energy-Storage Density in PZT/PZO-Based Multilayer Ferroelectric Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, K.; Li, Q.; Chanthad, C.; Gadinski, M.R.; Zhang, G.; Wang, Q. A Hybrid Material Approach Toward Solution-Processable Dielectrics Exhibiting Enhanced Breakdown Strength and High Energy Density. Adv. Funct. Mater. 2015, 25, 3505–3513. [Google Scholar] [CrossRef]
- Kim, J.; Saremi, S.; Acharya, M.; Velarde, G.; Parsonnet, E.; Donahue, P.; Alexander, Q.; Garcia, D.; Martin, L.W. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 2020, 369, 81–84. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Houwman, H.M.; Do, M.T.; Rijnders, G. Relaxor-ferroelectric thin film heterostructure with large imprint for high energy-storage performance at low operating voltage. Energy Stor. Mater. 2020, 25, 193–201. [Google Scholar] [CrossRef]
- Campagnol, N.; Romero-Vara, R.; Deleu, W.; Stappers, L.; Binnemans, K.; Vos, D.D.; Fransaer, J. A Hybrid Supercapacitor based on Porous Carbon and the Metal-Organic Framework MIL-100(Fe). ChemElectroChem 2014, 1, 1182–1188. [Google Scholar] [CrossRef]
- Chauhan, A.; Patel, S.; Vaish, R.; Bowen, C.R. Anti-Ferroelectric Ceramics for High Energy Density Capacitors. Materials 2015, 8, 8009–8031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Li, Q.; Dang, B.; Yang, Y.; Shao, T.; Li, H.; Hu, J.; Zeng, R.; He, J.; Wang, Q. A Scalable, High-Throughput, and Environmentally Benign Approach to Polymer Dielectrics Exhibiting Significantly Improved Capacitive Performance at High Temperatures. Adv. Mater. 2018, 30, 1805672. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, W.; Zhao, Y.; Yu, Y.; Fei, W. High Energy Storage Performance of Opposite Double-Heterojunction Ferroelectricity-Insulators. Adv. Funct. Mater. 2018, 28, 1706211. [Google Scholar] [CrossRef]
- Zhang, T.; Li, W.; Hou, Y.; Yu, Y.; Song, R.; Cao, W.; Fei, W. High-energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films. J. Am. Ceram. Soc. 2017, 100, 3080–3087. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Xu, Z.; Zhang, S. Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency. Adv. Mater. 2018, 30, 1802155. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Liu, M.; Zhang, Y.; Yu, Z.; Ouyang, J.; Pan, W. Increasing energy storage capabilities of space-charge dominated ferroelectric thin films using interlayer coupling. Acta Mater. 2017, 122, 252–258. [Google Scholar] [CrossRef]
- Fan, Q.; Ma, C.; Li, Y.; Liang, Z.; Cheng, S.; Guo, M.; Dai, Y.; Ma, C.; Lu, L.; Wang, W.; et al. Realization of high energy density in an ultra-wide temperature range through engineering of ferroelectric sandwich structures. Nano Energy 2019, 62, 725–733. [Google Scholar] [CrossRef]
- Chen, P.; Wu, S.; Li, P.; Zhai, J.; Shen, B. Great enhancement of energy storage density and power density in BNBT/xBFO multilayer thin film hetero-structures. Chem. Front. 2018, 5, 2300. [Google Scholar] [CrossRef]
- Silva, J.P.B.; Silva, J.M.B.; Oliveira, M.J.S.; Weingartner, T.; Sekhar, K.C.; Pereira, M.; Gomes, M.J.M. High-Performance Ferroelectric–Dielectric Multilayered Thin Films for Energy Storage Capacitors. Adv. Funct. Mater. 2019, 29, 1807196. [Google Scholar] [CrossRef]
- Sun, B.; Guo, M.; Wu, M.; Ma, Z.; Gao, W.; Sun, H.; Lou, X. Large enhancement of energy storage density in (Pb0.92La0.08)(Zr0.65Ti0.35)O3/PbZrO3 multilayer thin film. Ceram. Int. 2019, 45, 20046–20050. [Google Scholar] [CrossRef]
- Lu, H.; Glinsek, S.; Buragohain, P.; Defay, E.; Iñiguez, J.; Gruverman, A. Probing Antiferroelectric-Ferroelectric Phase Transitions in PbZrO3 Capacitors by Piezoresponse Force Microscopy. Adv. Funct. Mater. 2020, 30, 2003622. [Google Scholar] [CrossRef]
- Guo, X.; Ge, J.; Ponchel, F.; Rémiens, D.; Chen, Y.; Dong, X.; Wang, G. Effect of Sn substitution on the energy storage properties of high (001)-oriented PbZrO3 thin films. Thin Solid Films 2017, 632, 93–96. [Google Scholar] [CrossRef]
- Shiosaki, T.; Shimizu, M. Phase and composition control of PZT thin films. Ferroelectrics 1995, 170, 47–55. [Google Scholar] [CrossRef]
- Samanta, S.; Sankaranarayanan, V.; Sethupathi, K. Band gap, piezoelectricity and temperature dependence of differential permittivity and energy storage density of PZT with different Zr/Ti ratios. Vacuum 2018, 156, 456–462. [Google Scholar] [CrossRef]
- Sun, Z.; Ma, C.; Liu, M.; Cui, J.; Lu, L.; Lu, J.; Lou, X.; Jin, L.; Wang, H.; Jia, C. Ultrahigh Energy Storage Performance of Lead-Free Oxide Multilayer Film Capacitors via Interface Engineering. Adv. Mater. 2017, 29, 1604427. [Google Scholar] [CrossRef]
- Cai, H.; Yan, S.; Zhou, M.; Liu, N.; Ye, J.; Li, S.; Cao, F.; Dong, X.; Wang, G. Significantly improved energy storage properties and cycling stability in La-doped PbZrO3 antiferroelectric thin films by chemical pressure tailoring. J. Eur. Ceram. Soc. 2019, 39, 4761–4769. [Google Scholar] [CrossRef]
- Li, X.; Zhai, J.; Chen, H. (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thin films grown on LaNiO3-buffered and Pt-buffered silicon substrates by sol-gel processing. J. Appl. Phys. 2005, 97, 024102. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Trinh, T.T.; Dang, H.T.; Vu, H.N. Understanding the effects of electric-field-induced phase transition and polarization loop behavior on the energy storage performance of antiferroelectric PbZrO3 thin films. Thin Solid Films 2020, 697, 137794. [Google Scholar] [CrossRef]
- Pintilie, L.; Boldyreva, K.; Alexe, M.; Hesse, D. Coexistence of ferroelectricity and antiferroelectricity in epitaxial PbZrO3 films with different orientations. J. Appl. Phys. 2008, 103, 024101. [Google Scholar] [CrossRef]
- Tian, Y.; Jin, L.; Zhang, H.; Xu, Z.; Wei, X.; Politova, E.D.; Stefanovich, S.Y.; Tarakina, N.V.; Abrahams, I.; Yan, H. High energy density in silver niobate ceramics. J. Mater. Chem. A. 2016, 4, 17279. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, X.; An, S. Significant enhancement of energy-storage performance of (Pb0.91La0.09)(Zr0.65Ti0.35)O3 relaxor ferroelectric thin films by Mn doping. J. Appl. Phys. 2013, 114, 174102. [Google Scholar] [CrossRef]
- Oh, J.; Lee, Y.H.; Ju, B.K.; Shin, D.K.; Park, C.; Oh, M.H. Impact of surface properties on the dielectric breakdown for polycrystalline and multilayered BaTiO3 thin films. J. Appl. Phys. 1997, 82, 6203–6208. [Google Scholar] [CrossRef]
- Vasudevan, R.K.; Wu, W.; Guest, J.R.; Baddorf, A.P.; Morozovska, A.N.; Eliseev, E.A.; Balke, N.; Nagarajan, V.; Maksymovych, P.; Kalinin, S.V. Domain Wall Conduction and Polarization-Mediated Transport in Ferroelectrics. Adv. Funct. Mater. 2013, 23, 2592–2616. [Google Scholar] [CrossRef]
- Hao, X.; Zhai, J.; Zhou, J.; Yue, Z.; Yang, J.; Zhao, W.; An, S. Structure and electrical properties of PbZrO3 antiferroelectric thin films doped with barium and strontium. J. Alloy. Compd. 2011, 509, 271–275. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, X.; Zhou, J.; Xu, J.; An, S. Effects of raw materials on microstructure and dielectric properties of PbZrO3 antiferroelectric thin films prepared via sol–gel process. J. Alloy. Compd. 2011, 509, 8779–8782. [Google Scholar] [CrossRef]
- Hu, H.; Krupanidhi, S.B. Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr, Ti)O3 thin films. J. Mater. Res. 1994, 9, 1484–1498. [Google Scholar] [CrossRef]
- Bharadwaja, S.S.N.; Krupanidhi, S.B. Study of La-modified antiferroelectric PbZrO3 thin films. Thin Solid Films 2003, 423, 88–96. [Google Scholar] [CrossRef]
- Alkoy, E.M.; Shiosaki, T. Investigation of the Effect of Cerium Doping on the Electrical Properties and Leakage Current Behavior of Lead Zirconate Thin Films Derived by the Sol–Gel Method. J. Am. Ceram. Soc. 2009, 92, 396–404. [Google Scholar] [CrossRef]
- Alkoy, E.M.; Shiosaki, T. Electrical properties and leakage current behavior of un-doped and Ti-doped lead zirconate thin films synthesized by sol–gel method. Thin Solid Films 2008, 516, 4002–4010. [Google Scholar] [CrossRef]
- Lee, D.; Baek, S.H.; Kim, T.H.; Yoon, J.; Folkman, C.M.; Eom, C.B.; Noh, T.W. Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys. Rev. B 2011, 84, 125305. [Google Scholar] [CrossRef] [Green Version]
- Farokhipoor, S.; Noheda, B. Conduction through 71 degrees domain walls in BiFeO3 thin films. Phys. Rev. Lett. 2011, 107, 127601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pintilie, L.; Hesse, D.; LeRhun, G.; Alexe, M. Ferroelectric polarization-leakage current relation in high quality epitaxial Pb(Zr,Ti)O3 films. Phys. Rev. B 2007, 75, 104103. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Kong, M.; Wang, X.; Li, Y.; Yi, Z.; Sun, Z. Ultrahigh energy storage performance in gradient textured composites of plate-like Na0.5Bi4.5Ti4O15/PVDF through interface engineering. Ceram. Int. 2021, 47, 8787–8794. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, Y.; Chen, Q.; Chen, X.; Wang, G.; Dong, X.; Yang, J.; Bai, W.; Tang, X. Enhancement of Energy-Storage Density in PZT/PZO-Based Multilayer Ferroelectric Thin Films. Nanomaterials 2021, 11, 2141. https://doi.org/10.3390/nano11082141
Zhang J, Zhang Y, Chen Q, Chen X, Wang G, Dong X, Yang J, Bai W, Tang X. Enhancement of Energy-Storage Density in PZT/PZO-Based Multilayer Ferroelectric Thin Films. Nanomaterials. 2021; 11(8):2141. https://doi.org/10.3390/nano11082141
Chicago/Turabian StyleZhang, Jie, Yuanyuan Zhang, Qianqian Chen, Xuefeng Chen, Genshui Wang, Xianlin Dong, Jing Yang, Wei Bai, and Xiaodong Tang. 2021. "Enhancement of Energy-Storage Density in PZT/PZO-Based Multilayer Ferroelectric Thin Films" Nanomaterials 11, no. 8: 2141. https://doi.org/10.3390/nano11082141
APA StyleZhang, J., Zhang, Y., Chen, Q., Chen, X., Wang, G., Dong, X., Yang, J., Bai, W., & Tang, X. (2021). Enhancement of Energy-Storage Density in PZT/PZO-Based Multilayer Ferroelectric Thin Films. Nanomaterials, 11(8), 2141. https://doi.org/10.3390/nano11082141